Volume 41 Issue 1
May  2022
Turn off MathJax
Article Contents
LI Ling-na, SUN Yue, WAN Fang-fang, XU Xiao-niu, HUANG Xing-zhao. Research on Canopy Height Inversion of Moso Bamboo Forests on Ta-pieh Mountains Based on LiDAR[J]. JOURNAL OF BAMBOO RESEARCH, 2022, 41(1): 10-16. doi: 10.12390/jbr2022031
Citation: LI Ling-na, SUN Yue, WAN Fang-fang, XU Xiao-niu, HUANG Xing-zhao. Research on Canopy Height Inversion of Moso Bamboo Forests on Ta-pieh Mountains Based on LiDAR[J]. JOURNAL OF BAMBOO RESEARCH, 2022, 41(1): 10-16. doi: 10.12390/jbr2022031

Research on Canopy Height Inversion of Moso Bamboo Forests on Ta-pieh Mountains Based on LiDAR

doi: 10.12390/jbr2022031
  • Received Date: 2022-02-20
  • Publish Date: 2022-05-27
  • Accurately obtaining the canopy height of Phyllostachys edulis is of great significance for the study of the resource structure characteristics and sustainable management of Phyllostachys edulis forest. Taking Phyllostachys edulis stand in Zhuyuan Village,Guanmiao Township,Jinzhai County,Anhui Province as the research subject,28 standard sample plots of 25 m×25 m were established,and the height of each Moso bamboo canopy was determined. At the same time,both data of the Airborne LiDAR and the Spaceborne LiDAR were also obtained. The results indicated that slope and vegetation cover were the important characteristic parameters affecting the canopy height. Based on the data assimilation of the Airborne LiDAR and the Spaceborne LiDAR,the model of Phyllostachys edulis canopy height was established by using stepwise linear regression. The modeling effect analysis showed that the root mean square error was reduced by 0.77 m and the coefficient of determination was improved by 0.20 after incorporating the slope and vegetation cover. The prediction effect analysis showed that the correlation coefficient between the estimated and measured values was 0.96. Therefore,when retrieving Phyllostachys edulis canopy height from LiDAR data,terrestrial topography and vegetation cover should be taken into account in order to achieve the accurate estimation.
  • loading
  • [1]
    Yen T M,Lee J S. Comparing aboveground carbon sequestration between moso bamboo (Phyllostachys heterocycla) and China fir (Cunninghamia lanceolata) forests based on the allometric model[J]. Forest Ecology and Management,2011,261(6):995-1002.
    [2]
    刘广路,范少辉,漆良华,等.闽西北不同类型毛竹林养分分布及生物循环特征[J].生态学杂志,2010,29(11):2155-2161.
    [3]
    范少辉,刘广路,苏文会,等.竹林培育研究进展[J].林业科学研究,2018,31(1):137-144.
    [4]
    郭宝华,刘广路,范少辉,等.不同生产力水平毛竹林碳氮磷的分布格局和计量特征[J].林业科学,2014,50(6):1-9.
    [5]
    谭炳香,李增元,陈尔学,等.高光谱遥感森林信息提取研究进展[J].林业科学研究,2008,21(S1):105-111.
    [6]
    Coops N C,Hilker T,Wulder M A,et al. Estimating canopy structure of Douglas-fir forest stands from discrete-return LiDAR[J]. Trees-Structure and Function,2007,21(3):295-310.
    [7]
    Donoghue D N M,Watt P J. Using LiDAR to compare forest height estimates from IKONOS and Landsat ETM+data in Sitka spruce plantation forests[J]. International Journal of Remote Sensing,2006,27(11):2161-2175.
    [8]
    李文娟,赵传燕,别强,等.基于机载激光雷达数据的森林结构参数反演[J].遥感技术与应用,2015,30(5):917-924.
    [9]
    韩婷婷.激光雷达数据在森林垂直结构参数反演中的应用综述[J].北京测绘,2020,34(8):1061-1065.
    [10]
    Drake J B,Dubayah R O,Knox R G,et al. Sensitivity of large-footprint lidar to canopy structure and biomass in a neotropical rainforest[J]. Remote Sensing of Environment,2002,81(3):378-392.
    [11]
    Wang Y,Li G,Ding J,et al. A combined GLAS and MODIS estimation of the global distribution of mean forest canopy height[J]. Remote Sensing of Environment,2016,174:24-43.
    [12]
    Jin C,Oh C Y,Shin S,et al. A comparative study to evaluate accuracy on canopy height and density using UAV,ALS,and fieldwork[J]. Forests,2020,11(2):241.
    [13]
    耿林,李明泽,范文义,等.基于机载LiDAR的单木结构参数及林分有效冠的提取[J].林业科学,2018,54(7):62-72.
    [14]
    黄华国.林业定量遥感研究进展和展望[J].北京林业大学学报,2019,41(12):1-14.
    [15]
    Wagner W,Luckman A,Vietmeier J,et al. Large-scale mapping of boreal forest in SIBERIA using ERS tandem coherence and JERS backscatter data[J]. Remote Sensing of Environment,2003,85(2):125-144.
    [16]
    岳春宇,郑永超,庞勇,等.卫星林业遥感系统及应用[J].卫星应用,2020(10):51-55.
    [17]
    Lefsky M A,Harding D J,Keller M,et al. Estimates of forest canopy height and aboveground biomass using ICESat[J]. Geophysical Research Letters,2005,32(22):S02.
    [18]
    Yang T,Wang C,Li G C,et al. Forest canopy height mapping over China using GLAS and MODIS data[J]. Science China Earth Sciences,2015,58(1):96-105.
    [19]
    穆喜云,张秋良,刘清旺,等.基于机载LiDAR数据的林分平均高及郁闭度反演[J].东北林业大学学报,2015,43(9):84-89.
    [20]
    Wilkes P,Jones S D,Suarez L,et al. Mapping forest canopy height across large areas by upscaling ALS estimates with freely available satellite data[J]. Remote Sensing,2015,7(9):12563-12587.
    [21]
    邱世平.激光雷达技术在森林高度反演中的研究进展[J].林业调查规划,2019,44(2):26-29.
    [22]
    刘茜,杨乐,柳钦火,等.森林地上生物量遥感反演方法综述[J].遥感学报,2015,19(1):62-74.
    [23]
    吴迪,范文义.激光雷达协同多角度光学遥感数据反演树高[J].北京林业大学学报,2014,36(4):8-15.
    [24]
    胡凯龙,刘清旺,崔希民,等.多源遥感数据支持下的区域性森林冠层高度估测[J].武汉大学学报(信息科学版),2018,43(2):289-296.
    [25]
    Okojie J A,Okojie L O,Effiom A E,et al. Relative canopy height modelling precision from UAV and ALS datasets for forest tree height estimation[J]. Remote Sensing Applications:Society and Environment,2019,17:100284.
    [26]
    Selkowitz D J,Green G,Peterson B E,et al. A multi-sensor lidar,multi-spectral and multi-angular approach for mapping canopy height in boreal forest regions[J]. Remote Sensing of Environment,2012,121:458-471.
    [27]
    杨曦光,于颖,范文义.森林冠层光谱与林下背景光谱尺度差异分析[J].武汉大学学报(信息科学版),2020,45(4):511-516.
    [28]
    刘鲁霞,庞勇,李增元.基于地基激光雷达的亚热带森林单木胸径与树高提取[J].林业科学,2016,52(2):26-37.
    [29]
    杨超,陈宇,于可心,等.多路分光星载激光雷达接收光学系统设计[J].长春理工大学学报,2021,44(2):7-12.
    [30]
    吕艳星.基于深度学习的机载激光雷达树点云分类方法研究[D].杨凌:西北农林科技大学,2021.
    [31]
    庞勇,李增元,陈尔学,等.激光雷达技术及其在林业上的应用[J].林业科学,2005,41(3):129-136.
    [32]
    朱笑笑,王成,习晓环,等. ICESat-2星载光子计数激光雷达数据处理与应用研究进展[J].红外与激光工程,2020,49(11):76-85.
    [33]
    Adam M,Urbazaev M,Dubois C,et al. Accuracy assessment of GEDI terrain elevation and canopy height estimates in European temperate forests:influence of environmental and acquisition parameters[J]. Remote Sensing,2020,12(23):3948.
    [34]
    胡凯龙,刘清旺,庞勇,等.基于机载激光雷达校正的ICESat/GLAS数据森林冠层高度估测[J].农业工程学报,2017,33(16):88-95.
    [35]
    孙忠秋,高金萍,吴发云,等.基于机载激光雷达点云和随机森林算法的森林蓄积量估测[J].林业科学,2021,57(8):68-81.
    [36]
    Potapov P,Li XY,Hernandez-Serna A,et al. Mapping global forest canopy height through integration of GEDI and Landsat data[J]. Remote Sensing of Environment,2021,253:112165.
    [37]
    Lang N,Kalischek N,Armston J,et al. Global canopy height regression and uncertainty estimation from GEDI LIDAR waveforms with deep ensembles[J]. Remote Sensing of Environment,2022,268:112760.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (398) PDF downloads(109) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return