留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

竹子基因资源和应用技术研究进展

徐丹丹 李新林 邓伟芬 蒋思媛 任慧敏 王安可 杜旭华 柳参奎 亓果宁

徐丹丹, 李新林, 邓伟芬, 蒋思媛, 任慧敏, 王安可, 杜旭华, 柳参奎, 亓果宁. 竹子基因资源和应用技术研究进展[J]. 竹子学报, 2022, 41(4): 76-85. doi: 10.12390/jbr2022116
引用本文: 徐丹丹, 李新林, 邓伟芬, 蒋思媛, 任慧敏, 王安可, 杜旭华, 柳参奎, 亓果宁. 竹子基因资源和应用技术研究进展[J]. 竹子学报, 2022, 41(4): 76-85. doi: 10.12390/jbr2022116
XU Dan-dan, LI Xin-lin, DENG Wei-fen, JIANG Si-yuan, REN Hui-min, WANG An-ke, DU Xu-hua, LIU Shen-kui, QI Guo-ning. Research Progress of Gene Resources and Application Technology in Bamboo[J]. JOURNAL OF BAMBOO RESEARCH, 2022, 41(4): 76-85. doi: 10.12390/jbr2022116
Citation: XU Dan-dan, LI Xin-lin, DENG Wei-fen, JIANG Si-yuan, REN Hui-min, WANG An-ke, DU Xu-hua, LIU Shen-kui, QI Guo-ning. Research Progress of Gene Resources and Application Technology in Bamboo[J]. JOURNAL OF BAMBOO RESEARCH, 2022, 41(4): 76-85. doi: 10.12390/jbr2022116

竹子基因资源和应用技术研究进展

doi: 10.12390/jbr2022116
基金项目: 

省部共建亚热带森林培育国家重点实验室开放基金(SKLSS-KF2022-08)

详细信息
    作者简介:

    徐丹丹,硕士研究生,从事森林培育研究。E-mail:2641582894@qq.com。

    通讯作者:

    亓果宁,副教授,博士,从事植物营养抗逆与竹子种质资源创新研究。E-mail:gnqi@zafu.edu.cn

Research Progress of Gene Resources and Application Technology in Bamboo

  • 摘要: 竹子是世界和我国最重要的经济林木树种之一,具有重要的经济和生态价值。竹子种质资源的提升是竹产业发展的重大需求。随着分子生物学研究的不断进步,特别是竹子基因组的解析和遗传转化体系的建立,使得人们利用现代生物学技术提升竹子种质逐渐成为可能。笔者详细综述了近年来竹子研究的进展,包括竹子基因组的解析过程、调节竹子生长发育关键基因的挖掘,以及竹子再生和遗传转化体系的建立等。最后,对遗传转化新技术在竹子中的应用进行了展望。笔者系统地对目前竹子研究发掘的关键基因和关键技术进行了整理汇总,为今后竹子种质创新研究提供参考。
  • [1] 郭起荣,张莹,冉洪,等.竹子基因调查分析报告[J].世界竹藤通讯,2015,13(2):11-14.
    [2] Zheng Y S, Yang D M, Rong J D, et al. Allele-aware chromosome-scale assembly of the allopolyploid genome of hexaploid Ma bamboo (Dendrocalamus latiflorus Munro)[J]. Journal of Integrative Plant Biology,2022,64(3):649-670.
    [3] Peng Z H, Lu Y, Li L B, et al. The draft genome of the fast-growing non-timber forest species moso bamboo (Phyllostachys heterocycla)[J]. Nature Genetics,2013,45(4):456-461.
    [4] Zhao H S, Zhao S C, Fei B H, et al. Announcing the Genome Atlas of Bamboo and Rattan (GABR) project:promoting research in evolution and in economically and ecologically beneficial plants[J]. Gigascience,2017,6(7):1-7.
    [5] Zhao H S, Gao Z M, Wang L, et al. Chromosome-level reference genome and alternative splicing atlas of moso bamboo (Phyllostachys edulis)[J]. GigaScience,2018,7(10):1-12.
    [6] Zhao H S, Sun S, Ding Y L, et al. Analysis of 427 genomes reveals moso bamboo population structure and genetic basis of property traits[J]. Nature Communications,2021,12(1):5466.
    [7] Yu X L, Wang Y S, Kohnen M V, et al. Large Scale Profiling of Protein Isoforms Using Label-Free Quantitative Proteomics Revealed the Regulation of Nonsense-Mediated Decay in Moso Bamboo (Phyllostachys edulis)[J]. Cells,2019,8(7):744.
    [8] Gao Z M, Li C L, Peng Z H. Generation and analysis of expressed sequence tags from a normalized cDNA library of young leaf from Ma bamboo (Dendrocalamus latiflorus Munro)[J]. Plant Cell Reports,2011,30(11):2045-2057.
    [9] Liu M Y, Qiao G R, Jiang J, et al. Transcriptome Sequencing and De Novo Analysis for Ma Bamboo (Dendrocalamus latiflorus Munro) Using the Illumina Platform[J]. PLOS ONE,2012,7(10):e46766.
    [10] Zhao H S, Chen D L, Peng Z H, et al. Identification and characterization of microRNAs in the leaf of ma bamboo (Dendrocalamus latiflorus) by deep sequencing[J]. PLOS ONE,2013,8(10):e78755.
    [11] Guo Z H, Ma P F, Yang G Q, et al. Genome Sequences Provide Insights into the Reticulate Origin and Unique Traits of Woody Bamboos[J]. Molecular Plant,2019,12(10):1353-1365.
    [12] Tu M, Wang W J, Yao N, et al. The transcriptional dynamics during de novo shoot organogenesis of Ma bamboo (Dendrocalamus latiflorus Munro):implication of the contributions of the abiotic stress response in this process[J]. The Plant Journal,2021,107(5):1513-1532.
    [13] Li W, Shi C, Li K, et al. Draft genome of the herbaceous bamboo Raddia distichophylla[J]. G3-Genes Genomes Genetics,2021,11(2):jkaa049.
    [14] Zhang Z J, Yu P Y, Huang B, et al. Genome-wide identification and expression characterization of the DoG gene family of moso bamboo (Phyllostachys edulis)[J]. BMC Genomics,2022,23:357.
    [15] Wu R H, Shi Y R, Zhang Q, et al. Genome-Wide Identification and Characterization of the UBP Gene Family in Moso Bamboo (Phyllostachys edulis)[J]. International Journal of Molecular Sciences,2019,20(17):4309.
    [16] Jin G H, Ma P F, Wu X P, et al. New Genes Interacted With Recent Whole-Genome Duplicates in the Fast Stem Growth of Bamboos[J]. Molecular Biology and Evolution,2021,38(12):5752-5768.
    [17] Wang X Q, Yan X Y, Li S B, et al. Genome-wide identification, evolution and expression analysis of the aspartic protease gene family during rapid growth of moso bamboo (Phyllostachys edulis) shoots[J]. BMC Genomics,2021,22:45.
    [18] Huang B, Huang Z N, Ma R F, et al. Genome-wide identification and expression analysis of LBD transcription factor genes in Moso bamboo (Phyllostachys edulis)[J]. BMC Plant Biology,2021,21:296.
    [19] Huang B, Huang Z N, Ma R F, et al. Genome-wide identification and analysis of the heat shock transcription factor family in moso bamboo (Phyllostachys edulis)[J]. Scientific Reports,2021. DOI: https://doi.org/10.21203/rs.3.rs-116570/v1.
    [20] Guo X Q, Chen H J, Liu Y, et al. The acid invertase gene family is involved in internode elongation in Phyllostachys heterocycla cv. pubescens[J]. Tree Physiology,2020,40(9):1217-1231.
    [21] 刘青,孙化雨,李利超,等.麻竹同源异型盒基因DlKNOX的克隆及表达分析[J].热带亚热带植物学报,2016,24(6):649-656.
    [22] Wei Q, Guo L, Jiao C, et al. Characterization of the developmental dynamics of the elongation of a bamboo internode during the fast growth stage[J]. Tree Physiology,2019,39(7):1201-1214.
    [23] Niu L Z, Xu W, Ma P F, et al. Single-base methylome analysis reveals dynamic changes of genome-wide DNA methylation associated with rapid stem growth of woody bamboos[J]. Planta,2022,256(3):53.
    [24] Wang J L, Hou Y G, Wang Y, et al. Integrative lncRNA landscape reveals lncRNA-coding gene networks in the secondary cell wall biosynthesis pathway of moso bamboo (Phyllostachys edulis)[J]. BMC Genomics,2021,22:638.
    [25] Shan X M, Yang K B, Xu X R, et al. Genome-Wide Investigation of the NAC Gene Family and Its Potential Association with the Secondary Cell Wall in Moso Bamboo[J]. Biomolecules,2019,9(10):609.
    [26] Que F, Liu Q N, Zha R F, et al. Genome-Wide Identification, Expansion, and Evolution Analysis of Homeobox Gene Family Reveals TALE Genes Important for Secondary Cell Wall Biosynthesis in Moso Bamboo (Phyllostachys edulis)[J]. International Journal of Molecular Sciences, 2022, 23(8):4112.
    [27] Yang Y, Kang L, Wu R H, et al. Genome-wide identification and characterization of UDP-glucose dehydrogenase family genes in moso bamboo and functional analysis of PeUGDH4 in hemicellulose synthesis[J]. Scientific Reports,2020,10:10124.
    [28] 张颖.毛竹花发育4个时期关键调控途径筛选与相关基因研究[D].北京:中国林业科学研究院,2014.
    [29] Dutta S, Deb A, Biswas P, et al. Identification and functional characterization of two bamboo FD gene homologs having contrasting effects on shoot growth and flowering[J]. Scientific Reports,2021,11:7849.
    [30] Hou D, Li L, Ma T F, et al. The SOC1-like gene BoMADS50 is associated with the flowering of Bambusa oldhamii[J]. Horticulture Research,2021, 8:133.
    [31] Dutta S, Biswas P, Chakraborty S, et al. Identification, characterization and gene expression analyses of important flowering genes related to photoperiodic pathway in bamboo[J]. BMC Genomics,2018,19:190.
    [32] Zhang Y T, Tang D Q, Lin X C, et al. Genome-wide identification of MADS-box family genes in moso bamboo (Phyllostachys edulis) and a functional analysis of PeMADS5 in flowering[J]. BMC Plant Biology,2018,18:176.
    [33] 高志民,娄永峰,王丽丽,等.麻竹miR172a靶基因DlAP2的克隆及其表达[J].热带亚热带植物学报,2015,23(3):245-251.
    [34] 陈东亮.麻竹转录因子D1 SCL6和D1 AP2功能研究及叶片miRNA的分离鉴定[D].北京:中国林业科学研究院,2013.
    [35] Fan H J, Zhuo R Y, Wang H Y, et al. A comprehensive analysis of the floral transition in ma bamboo (Dendrocalamus latiflorus) reveals the roles of DlFTs involved in flowering[J]. Tree Physiology,2022,42(9):1899-1911.
    [36] Cheng Z C, Hou D, Ge W, et al. Integrated mRNA, MicroRNA Transcriptome and Degradome Analyses Provide Insights into Stamen Development in Moso Bamboo[J]. Plant and Cell Physiology,2020,61(1):76-87.
    [37] Shi Y N, Liu H L, Gao Y M, et al. Genome-wide identification of growth-regulating factors in moso bamboo (Phyllostachys edulis):in silico and experimental analyses[J]. PeerJ,2019,7:e7510.
    [38] Li L, Shi Q Q, Li Z Q, et al. Genome-wide identification and functional characterization of the PheE2F/DP gene family in Moso bamboo[J]. BMC Plant Biology,2021,21:158.
    [39] Zhao J W, Gao P J, Li C L, et al. PhePEBP family genes regulated by plant hormones and drought are associated with the activation of lateral buds and seedling growth in Phyllostachys edulis[J]. Tree Physiology,2019,39(8):1387-1404.
    [40] Qiao G R, Liu M Y, Song K L, et al. Phenotypic and Comparative Transcriptome Analysis of Different Ploidy Plants in Dendrocalamus latiflorus Munro[J]. Frontiers in Plant Science,2017,8:1371.
    [41] 陈刚,王楠楠,白玮元,等.麻竹DlmDELLA基因克隆与分析[J].分子植物育种,2021.
    [42] Jin K M, Wang Y J, Zhuo R Y, et al. TCP Transcription Factors Involved in Shoot Development of Ma Bamboo (Dendrocalamus latiflorus Munro)[J]. Frontiers in Plant Science,2022,13:884443.
    [43] Cheng X R, Xiong R, Yan H W, et al. The trihelix family of transcription factors:functional and evolutionary analysis in Moso bamboo (Phyllostachys edulis)[J]. BMC Plant Biology,2019,19:154.
    [44] Ma R F, Huang B, Huang Z N, et al. Genome-wide identification and analysis of the YABBY gene family in Moso Bamboo (Phyllostachys edulis (Carrière) J. Houz)[J]. PeerJ,2021,9:e11780.
    [45] Jin K M, Zhuo R Y, Xu D, et al. Genome-Wide Identification of the Expansin Gene Family and Its Potential Association with Drought Stress in Moso Bamboo[J]. International Journal of Molecular Sciences,2020,21(24):9491.
    [46] Wang T T, Yang Y, Lou S T, et al. Genome-Wide Characterization and Gene Expression Analyses of GATA Transcription Factors in Moso Bamboo (Phyllostachys edulis)[J]. International Journal of Molecular Sciences,2020,21(1):14.
    [47] Wu M, Liu H L, Han G M, et al. A moso bamboo WRKY gene PeWRKY83 confers salinity tolerance in transgenic Arabidopsis plants[J]. Scientific Reports,2017,7:11721.
    [48] Li L, Mu S H, Cheng Z C, et al. Characterization and expression analysis of the WRKY gene family in moso bamboo[J]. Scientific Reports,2017, 7(1):6675.
    [49] Wu M, Li Y, Chen D M, et al. Genome-wide identification and expression analysis of the IQD gene family in moso bamboo (Phyllostachys edulis)[J]. Scientific Reports,2016,6:24520.
    [50] Xiang M Q, Ding W S, Wu C, et al. Production of purple Ma bamboo (Dendrocalamus latiflorus Munro) with enhanced drought and cold stress tolerance by engineering anthocyanin biosynthesis[J]. Planta,2021,254:50.
    [51] 李蓉,曾炳山,何高峰,等.竹子组织培养的研究进展及趋势[J].安徽农业科学,2008(11):4405-4407,4434.
    [52] 张春玲.竹子组织培养研究进展[J].现代园艺,2019(12):7-8.
    [53] 陈国华,陈冬怡,王强,等.笋用竹组培快繁及其种苗产业化[J].农业工程,2018,8(11):115-119.
    [54] 李肇锋,黄碧华,周俊新,等.多花山竹子组培初代培养技术研究[J].农学学报,2017,7(12):92-96.
    [55] 杨海芸,何安国,姜可以,等. 137 Cs-γ射线辐照矢竹类组培苗生物学效应[J].核农学报,2014,28(11):1941-1949.
    [56] 王舒.黄甜竹组织培养快繁体系建立及其机理研究[D].福州:福建农林大学,2017.
    [57] 赵康.毛竹种胚愈伤组织诱导及防褐化的初步研究[D].合肥:安徽农业大学,2015.
    [58] 裴海燕.雷竹体胚再生及试管繁殖研究[D].杭州:浙江农林大学,2010.
    [59] 徐丽君.曙!竹快繁体系建立及其抗寒适应性研究[D].杭州:浙江农林大学,2013.
    [60] 诸葛菲.马来甜龙竹芽尖再生体系的建立及转基因研究[D].杭州:浙江农林大学,2018.
    [61] 单妍.香糯竹组培技术研究[J].林业调查规划,2017,42(2):71-75.
    [62] 李明.孝顺竹亚属两种竹子体细胞再生体系初步研究[D].南京:南京林业大学,2010.
    [63] 夏登云.慈竹组培快繁体系的研究[D].合肥:安徽农业大学,2009.
    [64] 王曙光.巨龙竹胚胎学及离体器官的脱分化研究[D].昆明:西南林学院,2006.
    [65] 张宁.版纳甜龙竹愈伤组织诱导与植株再生体系的建立[D].杭州:浙江农林大学,2011.
    [66] 张云洁,蔡昌杨,冉取丙,等.竹子遗传改良技术研究进展[J].世界林业研究,2021,34(5):26-31.
    [67] 乔桂荣.第六届全国林木遗传育种大会会议文集:麻竹花粉发育过程观察及花药离体培养研究[C].杭州:中国林学会林木遗传育种分会,2008.
    [68] 唐磊.两种观赏竹的组织培养研究[D].长沙:中南林业科技大学,2009.
    [69] 江涛.毛竹扩繁与再生体系的建立及PhE2F和PhPPO家族在毛竹中的表达[D].福州:福建农林大学,2017.
    [70] 覃和业,彭素娜,陈媚,等.麻竹组培苗的生根与移栽技术研究[J].热带农业科学,2014,34(8):43-46.
    [71] 徐振国,黄大勇,梁晓静,等.基质、激素种类和浓度及其交互作用对麻竹扦插生长的影响[J].中南林业科技大学学报, 2019, 39(2):47-52.
    [72] 徐振国,梁晓静,黄大勇,等.麻竹扦插生根解剖学特性及激素调控[J].广西林业科学,2018,47(2):184-189.
    [73] 张玲,蒋晶,乔桂荣,等.利用农杆菌介导法获得转codA基因麻竹再生植株的研究[J].竹子研究汇刊,2012,31(1):1-6

    ,14.
    [74] 叶善汶.毛竹瞬时表达相关体系建立及应用[D].福州:福建农林大学,2018.
    [75] Huang B Y, Zhuo R Y, Fan H J, et al. An Efficient Genetic Transformation and CRISPR/Cas9-Based Genome Editing System for Moso Bamboo (Phyllostachys edulis)[J]. Frontiers in Plant Science,2022,13:822022.
    [76] Ye S W, Chen G, Kohnen M V, et al. Robust CRISPR/Cas9 mediated genome editing and its application in manipulating plant height in the first generation of hexaploid Ma bamboo (Dendrocalamus latiflorus Munro)[J]. Plant Biotechnology Journal,2020,18(7):1501-1503.
    [77] Kwak S Y, Lew T T S, Sweeney C J, et al. Chloroplast-selective gene delivery and expression in planta using chitosan-complexed single-walled carbon nanotube carriers[J]. Nature Nanotechnology,2019,14(5):447-455.
    [78] Li S J, Jia S G, Hou L L, et al. Mapping of transgenic alleles in soybean using a nanopore-based sequencing strategy[J]. Journal of Experimental Botany,2019,70(15):3825-3833.
    [79] Lv Z Y, Jiang R, Chen J F, et al. Nanoparticle-mediated gene transformation strategies for plant genetic engineering[J]. The Plant Journal,2020, 104(4):880-891.
    [80] Zhao X, Meng Z G, Wang Y, et al. Pollen magnetofection for genetic modification with magnetic nanoparticles as gene carriers[J]. Nature Plants, 2017,3(12):956-964.
    [81] Bouton C, King R C, Chen H X, et al. Foxtail mosaic virus:A Viral Vector for Protein Expression in Cereals[J]. Plant Physiology,2018,177(4):1352-1367.
  • 加载中
计量
  • 文章访问数:  278
  • HTML全文浏览量:  16
  • PDF下载量:  101
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-28

目录

    /

    返回文章
    返回