留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铬污染对雷竹林土壤质量的影响

徐雷 张小平 卞方圆 周志勤

徐雷, 张小平, 卞方圆, 周志勤. 铬污染对雷竹林土壤质量的影响[J]. 竹子学报, 2022, 41(4): 45-50. doi: 10.12390/jbr2022098
引用本文: 徐雷, 张小平, 卞方圆, 周志勤. 铬污染对雷竹林土壤质量的影响[J]. 竹子学报, 2022, 41(4): 45-50. doi: 10.12390/jbr2022098
XU Lei, ZHANG Xiao-ping, BIAN Fang-yuan, ZHOU Zhi-qin. Effects of Cr Pollution on Soil Quality of Phyllostachys violascens ‘Prevernalis’ Forests[J]. JOURNAL OF BAMBOO RESEARCH, 2022, 41(4): 45-50. doi: 10.12390/jbr2022098
Citation: XU Lei, ZHANG Xiao-ping, BIAN Fang-yuan, ZHOU Zhi-qin. Effects of Cr Pollution on Soil Quality of Phyllostachys violascens ‘Prevernalis’ Forests[J]. JOURNAL OF BAMBOO RESEARCH, 2022, 41(4): 45-50. doi: 10.12390/jbr2022098

铬污染对雷竹林土壤质量的影响

doi: 10.12390/jbr2022098
基金项目: 

国家林业和草原局竹子研究开发中心英才培养科研项目(ZXYC202202)

详细信息
    作者简介:

    徐雷,工程师,从事污染环境治理研究。E-mail:214132487@qq.com。

    通讯作者:

    卞方圆,助理研究员,博士,从事竹林土壤生态修复研究。E-mail:bianfangyuan@yeah.net

Effects of Cr Pollution on Soil Quality of Phyllostachys violascens ‘Prevernalis’ Forests

  • 摘要: 竹子具有较高的生物量和较强的重金属耐性,是一种极具潜力的植物修复材料。然而,目前尚不清楚铬(Cr)污染环境下,Cr对雷竹林土壤性质的影响。笔者研究了雷竹根际与非根际土壤理化性质沿Cr污染梯度分布的变化特征,分析了土壤理化性质与Cr含量之间的相互关系。结果表明:土壤pH值和碱解氮随Cr污染的增加而降低,有机碳随Cr污染的增加而增加;比较根际与非根际土壤,低Cr污染土壤的总Cr和有效Cr含量无显著差异,而中度和高污染的非根际土壤的有效态Cr含量均显著高于根际土壤;中度和高污染土壤有效Cr占总Cr的含量达到1.5%~2.6%,显著高于低污染土壤;土壤Cr含量与总有机碳和有效Cr呈正相关,与pH值呈负相关;在非根际和根际土壤中,随着Cr浓度的增加,土壤pH值和速效钾降低,有机碳和有效磷增加。笔者通过Cr污染对雷竹林土壤质量的影响研究,为提高竹子生态修复效果提供了科学依据。
  • [1] Wang L, Wang L A, Zhan X Y, et al. Response mechanism of microbial community to the environmental stress caused by the different mercury concentration in soils[J]. Ecotoxicology and Environmental Safety,2020,188:109906.
    [2] Oliveira H. Chromium as an Environmental Pollutant:Insights on Induced Plant Toxicity[J]. Journal of Botany,2012,2012:375843.
    [3] Zhang C W, Cai K K, Feng Q J, et al. Chromium (Ⅵ) promotes cell migration through targeting epithelial-mesenchymal transition in prostate cancer[J]. Toxicology Letters,2019,300:10-17.
    [4] Greipsson S. Phytoremediation[J]. Nature Education Knowledge,2011,3(10):7.
    [5] Dai Y Y, Liu R, Zhou Y M, et al. Fire Phoenix facilitates phytoremediation of PAH-Cd co-contaminated soil through promotion of beneficial rhizosphere bacterial communities[J]. Environment International,2020,136:105421.
    [6] Zhuang P, Yang Q W, Wang H B, et al. Phytoextraction of Heavy Metals by Eight Plant Species in the Field[J]. Water, Air, and Soil Pollution, 2007,184:235-242.
    [7] Wieshammer G, Unterbrunner R, García T B, et al. Phytoextraction of Cd and Zn from agricultural soils by Salix ssp. and intercropping of Salix caprea and Arabidopsis halleri[J]. Plant and Soil,2007,298:255-264.
    [8] 吕衡,张健,杨阳阳,等.竹林生态系统碳汇的组分、固定机制及研究方向[J].竹子学报,2021,40(3):90-94.
    [9] Bian F Y, Zhong Z K, Zhang X P, et al. Bamboo-An untapped plant resource for the phytoremediation of heavy metal contaminated soils[J]. Chemosphere,2020,246:125750.
    [10] Bian F Y, Zhong Z K, Li C Z, et al. Intercropping improves heavy metal phytoremediation efficiency through changing properties of rhizosphere soil in bamboo plantation[J]. Journal of Hazardous Materials,2021,416:125898.
    [11] 卞方圆,钟哲科,张小平,等.毛竹和伴矿景天对重金属污染土壤的修复作用和对微生物群落的影响[J].林业科学,2018,54(8):106-116.
    [12] Zhang X P, Bian F Y, Zhong Z K, et al. Deciphering the rhizosphere microbiome of a bamboo plant in response to different chromium contamination levels[J]. Journal of Hazardous Materials,2020,399:123107.
    [13] Zhang X P, Gai X, Zhong Z K, et al. Understanding variations in soil properties and microbial communities in bamboo plantation soils along a chromium pollution gradient[J]. Ecotoxicology and Environmental Safety,2021,222:112507.
    [14] 沈潇源,段新朋,金杨兵,等.竹纤维素/Mg-Al LDH复合气凝胶的制备及其对铬(CrO42-)的吸附性能研究[J].竹子学报,2021,40(1):32-37.
    [15] 鲁如坤.土壤农化分析[M].北京:中国农业科技出版社,2000.
    [16] 胡俊靖,何奇江,华锦欣,等.缓释肥及其施用方式对雷竹光合特性的影响[J].竹子学报,2021,40(1):38-43.
    [17] 杨丽婷,谢燕燕,俞文仙,等.长期林地覆盖经营对雷竹林自然笋外观、营养和食味品质的影响[J].竹子学报,2021,40(3):7-12.
    [18] Liang J, Yang Z X, Tang L, et al. Changes in heavy metal mobility and availability from contaminated wetland soil remediated with combined biochar-compost[J]. Chemosphere,2017,181:281-288.
    [19] Shrestha R A, Fischer R, Sillanp M. Investigations on different positions of electrodes and their effects on the distribution of Cr at the water sediment interface[J]. International Journal of Environmental Science&Technology,2007,4(4):413-420.
    [20] Zeng F R, Ali S, Zhang H T, et al. The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants[J]. Environmental Pollution,2011,159(1):84-91.
    [21] Zwolak A, Sarzyńska M, Szpyrka E, et al. Sources of Soil Pollution by Heavy Metals and Their Accumulation in Vegetables:a Review[J]. Water, Air,&Soil Pollution,2019,230(7):164.
    [22] Valsecchi G, Gigliotti C, Farini A. Microbial biomass, activity, and organic matter accumulation in soils contaminated with heavy metals[J]. Biology and Fertility of Soils,1995,20(4):253-259.
    [23] Tyler G. Heavy metal pollution and mineralisation of nitrogen in forest soils[J]. Nature,1975,255(5511):701-702.
    [24] Chibuike G U, Obiora S C. Heavy Metal Polluted Soils:Effect on Plants and Bioremediation Methods[J]. Applied and Environmental Soil Science, 2014,2014:752708.
    [25] Bian F Y, Zhong Z K, Wu S C, et al. Comparison of heavy metal phytoremediation in monoculture and intercropping systems of Phyllostachys praecox and Sedum plumbizincicola in polluted soil[J]. International Journal of Phytoremediation,2018,20(5):490-498.
  • 加载中
计量
  • 文章访问数:  153
  • HTML全文浏览量:  41
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-17

目录

    /

    返回文章
    返回