留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

竹林生态系统碳汇的组分、固定机制及研究方向

吕衡 张健 杨阳阳 冷利松 郭帆 卞方圆

吕衡, 张健, 杨阳阳, 冷利松, 郭帆, 卞方圆. 竹林生态系统碳汇的组分、固定机制及研究方向[J]. 竹子学报, 2021, 40(3): 90-94. doi: 10.12390/jbr2022008
引用本文: 吕衡, 张健, 杨阳阳, 冷利松, 郭帆, 卞方圆. 竹林生态系统碳汇的组分、固定机制及研究方向[J]. 竹子学报, 2021, 40(3): 90-94. doi: 10.12390/jbr2022008
LV Heng, ZHANG Jian, YANG Yang-yang, LENG Li-song, GUO Fan, BIAN Fang-yuan. Carbon Sequestration Component, Fixing Mechanism and Future Research for Bamboo Forest Ecosystem[J]. JOURNAL OF BAMBOO RESEARCH, 2021, 40(3): 90-94. doi: 10.12390/jbr2022008
Citation: LV Heng, ZHANG Jian, YANG Yang-yang, LENG Li-song, GUO Fan, BIAN Fang-yuan. Carbon Sequestration Component, Fixing Mechanism and Future Research for Bamboo Forest Ecosystem[J]. JOURNAL OF BAMBOO RESEARCH, 2021, 40(3): 90-94. doi: 10.12390/jbr2022008

竹林生态系统碳汇的组分、固定机制及研究方向

doi: 10.12390/jbr2022008
基金项目: 

浙江省省院合作林业科技项目(2020SY01)

详细信息
    作者简介:

    吕衡,工程师,本科,从事竹林研究。E-mail:352360581@163.com。

    通讯作者:

    卞方圆,助理研究员,博士,从事竹林土壤生态修复研究。E-mail: bianfangyuan@yeah.net

Carbon Sequestration Component, Fixing Mechanism and Future Research for Bamboo Forest Ecosystem

  • 摘要: 全球气候变化是当今世界普遍关注的焦点,国内外对竹林生态系统碳汇的研究日益增加,竹林在我国森林植被储碳居于榜首。该文综述了竹林生态系统碳汇的组分、机制研究的已有成果,建议深入研究的方向,为竹林生态系统减排CO2提供理论依据和技术参考。竹林植株各部分的固碳量是竹秆最大(>52%),依次是竹根、竹兜、竹枝、竹鞭和竹叶。竹林与C4能源植物芒草具有相同水平的高生物产量和高光能转化效率,但竹林木质化程度更高,其固碳的数量和质量也就更佳。竹子是需硅量很大的植物,根系从土壤中吸收可溶态硅,促进了硅酸岩矿物的风化并固定大气的CO2,所以竹林比其他需硅量少的林种具有更大碳汇功能。建议进一步研究的是:深入探讨竹子高光合效率和高碳汇功能的机理;培育和推广植硅体含量高的竹品种;研究竹林土壤中黑炭的固碳机制,使CO2减排变得更加长期有效。鉴于竹林在固碳减排中的重要作用,发掘和释放竹林碳汇的巨大潜力为森林碳汇减缓全球气候变化提供思路和方法。
  • [1] 方精云, 郭兆迪, 朴世龙, 等. 1981-2000年中国陆地植被碳汇的估算[J]. 中国科学:地球科学, 2007, 37(6):804-812.
    [2] 杜华强, 周国模, 徐小军. 竹林生物量碳储量遥感定量估算[M]. 北京:科学出版社, 2012.
    [3] 樊龙江, 郭兴益, 马乃训.竹类植物与水稻等其它禾本科作物的系统进化关系及基因序列组成的比较[J]. 林业科学研究, 2006, 19(2):165-169.
    [4] 周芳纯.竹林培育学[M]. 北京:中国林业出版社, 1998:1-31.
    [5] Parr J F, Sullivan L A. Phytolith occluded carbon and silica variability in wheat cultivars[J]. Plant Soil, 2011, 342:165-171.
    [6] 庄舜尧, 季海宝, 张厚喜, 等.福建省建瓯市毛竹林生态系统固碳状态研究[J]. 生态环境学报, 2012, 21(7):1200-1204.
    [7] 修诚明, 于海涵, 盖旭, 等. 发展毛竹林下经济对乡村振兴的影响——以浙江省衢州市为例[J]. 竹子学报, 2020, 39(2):79-84.
    [8] Bian, F., Zhong, Z., Zhang, X.,et al. Bamboo-An untapped plant resource for the phytoremediation of heavy metal contaminated soils[J]. Chemosphere, 2020, 246, 125750.
    [9] Lessard G, Chouinard A. Bamboo research in Asia[C]. Proceedings of a workshop held in Singapore, IDRC Ottawa, Canada, 1980.
    [10] 周国模, 姜培坤. 毛竹林的碳密度和碳储量及其空间分布[J]. 林业科学, 2004, 40(6):20-24.
    [11] Cao Z H, Zhou G M, Wong M H. Special Issue on Bamboo and Climate Change in China[J]. Botanical Review, 2011, 77(3):188-189.
    [12] 吴志庄, 杜旭华, 熊德礼, 等.不同类型竹种光合特性的比较研究[J]. 生态环境学报, 2013, 22(9):1523-1527.
    [13] 施建敏, 郭起荣, 杨光耀, 等. 毛竹光合作用对环境因子的季节响应[J]. 广西植物, 2007, 27(6):923-928.
    [14] 林琼影, 胡剑, 温国胜, 等. 天目山毛竹叶冬季光合作用日变化规律[J]. 福建林学院学报, 2008, 28(1):61-64.
    [15] Yen T M, Lee J S. Comparing aboveground carbon sequestration between moso bamboo (Phyllostachys heterocycla) and China fir (Cunninghamia lanceolata) forests based on the allometric model[J]. Forest Ecology and Management, 2011, 261(6):995-1002.
    [16] Jiang P K, Meng C F, Zhou G M, et al. Comparative study of carbon storage in different forest stands in subtropical China[J]. Botanical Review, 2011, 77(3):242-251.
    [17] 季海宝, 庄舜尧, 张厚喜, 等.我国毛竹林生态系统碳储量的地带性差异[J]. 生态环境学报, 2013, 22(1):1-5.
    [18] Kuehl Y, Li Y, Henley G. Impacts of selective harvest on the carbon sequestration potential in Moso bamboo (Phyllostachys pubescens) plantations[J]. Forests, Trees and Livelihoods, 2013, 22(1):1-18.
    [19] 费世民.竹产品全生命周期碳足迹研究进展及其测定框架[J]. 四川林业科技, 2021, 42(6):1-10.
    [20] Krishnan S, Samson N P, Ravichandran P, et al. Phytoliths of Indian grasses and their potential use in identification[J]. Botanical Journal of the Linnean Society, 2000, 132:241-252.
    [21] 戎洁庆, 潘月, 桂仁意. 硅肥对雷竹林生长影响研究[J]. 江西农业大学学报, 2013, 35(3):473-479.
    [22] 胡炳堂, 洪顺山. 毛竹施用硅肥的效应研究[J]. 林业科学研究, 1990, 3(4):368-374.
    [23] Marschner H. Mineral Nutrition of Higher Plants[M]. 2nd ed. London:Academic Press, 1995, 889.
    [24] Song Z L, Zhao S, Zhang Y, et al. Plant impact on CO2 consumption by silicate weathering:the role of bamboo[J]. Botanical Review, 2011, 77(3):208-213.
    [25] Piperno D R. Phytolith analysis:An archaeological and geological perspective[M]. San Diego:Academic Press, 1988.
    [26] Alexandre A, Mcunier J, Colin F, et al. Plant impact on the biogeochemical cycle of silicon and related weathering process[J]. Geochim Consmochim Acta, 1997, 61:677-682.
    [27] 刘蕾蕾, 周国模, 宋照亮, 等. 不同生态型竹子的硅分布特征[J]. 浙江农林大学学报, 2015, 32(5):668-674.
    [28] 黄张婷, 张艳, 宋照亮, 等.雷竹覆盖物分解速率及其硅含量的变化[J]. 生态学报, 2013, 33(23):7373-7381.
    [29] 郭凤山, 宋照亮, Leigh Sullivan, 等.岩粉施加对水稻生态系统植硅体碳的增汇作用[J]. 科学通报, 2015, 60(10):963.
    [30] Druffel E R M. Comments on the importance of black carbon in the global carbon cycle[J]. Marine Chemistry, 2004, 92:197-200.
    [31] Kuhlbusch T A J, Crutzen P J. Toward a global estimate of black carbon in residues of vegetation fires representing a sink of atmospheric CO2 and a source of O2[J]. Global Biogeochemical Cycle, 1995, 9(4):491-501.
    [32] Lehmann J. Bio-energy in the black[J]. Frontiers in Ecology and the Environment, 2007, 5(7):381-387.
  • 加载中
计量
  • 文章访问数:  580
  • HTML全文浏览量:  86
  • PDF下载量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-25

目录

    /

    返回文章
    返回