留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

竹材细胞壁水分研究进展

袁晶 方长华 张淑琴 陈美玲 陈琦 刘嵘 罗俊吉 费本华

袁晶, 方长华, 张淑琴, 陈美玲, 陈琦, 刘嵘, 罗俊吉, 费本华. 竹材细胞壁水分研究进展[J]. 竹子学报, 2020, 39(1): 24-32.
引用本文: 袁晶, 方长华, 张淑琴, 陈美玲, 陈琦, 刘嵘, 罗俊吉, 费本华. 竹材细胞壁水分研究进展[J]. 竹子学报, 2020, 39(1): 24-32.
YUAN Jing, FANG Chang-hua, ZHANG Shu-qin, CHEN Mei-ling, CHEN Qi, LIU Rong, LUO Jun-ji, FEI Benhua. Research Progress on Water of Cell Wall of Bamboo[J]. JOURNAL OF BAMBOO RESEARCH, 2020, 39(1): 24-32.
Citation: YUAN Jing, FANG Chang-hua, ZHANG Shu-qin, CHEN Mei-ling, CHEN Qi, LIU Rong, LUO Jun-ji, FEI Benhua. Research Progress on Water of Cell Wall of Bamboo[J]. JOURNAL OF BAMBOO RESEARCH, 2020, 39(1): 24-32.

竹材细胞壁水分研究进展

基金项目: 

国家自然科学基金(31770599)

详细信息
    作者简介:

    袁晶,博士生,从事竹材科学方面的研究。E-mail:yuanjingnw@163.com。

    通讯作者:

    费本华,研究员,从事竹材科学方面的研究。E-mail:feibenhua@icbr.ac.cn

Research Progress on Water of Cell Wall of Bamboo

  • 摘要: 水分是植物材料不可分割的部分,与细胞壁材性紧密相关。研究水分与细胞壁之间的规律性,对细胞壁材料认知和高效利用意义重大。以竹材细胞壁水分为研究对象,综述了竹材纤维饱和点,不同尺度细胞壁水分特点、类型、作用机制,以及细胞壁水分的测试设备、测试方法等方面研究成果,分析了宏观尺度下吸湿解吸及滞后过程,阐明了竹材细胞壁水分变化特征,提出了竹材纤维饱和点研究的不统一性。针对竹材细胞壁水分分布、存在位置、变化规律以及与细胞壁的相互作用机制尚存在许多疑问,相关研究结论缺乏,期望加强基础研究,利用现有高新技术和先进研究方法,加大投入研究力量,为竹材细胞壁干缩湿胀、干燥基准、防霉防腐、耐久性等提供科学依据,推动竹材基础和应用研究的发展进程。
  • [1] Buckingham K. Bamboo:the secret weapon in forest and landscape restoration[J]. magazine of the American bamboo society, 2014, 35(5):7-9.
    [2] Lokesha G, Venkatarama reddy M, Yella reddy T. Analysis of bamboo as a functionally graded material[J]. International Journal of Engineering Science & Technology, 2014, 6(9).
    [3] 江泽慧. 世界竹藤[M]. 沈阳:辽宁科学技术出版社. 2002.
    [4] 费本华. 建立国家竹材仓储机制[J]. 世界竹藤通讯, 2019,17(6):1-4.
    [5] Tiemann H. Effect of moisture on the strength and stiffness of wood[J]. Journal of the Franklin Institute, 1906, 162(6):465-466. doi: 10.1016/s0016-0032(06)90265-8.
    [6] 周芳纯. 竹林培育学[M]. 北京:中国林业出版社, 1998:363-379.
    [7] 关明杰. 竹材纤维饱和点的研究[D]. 南京:南京林业大学, 2002.
    [8] 陈森, 蒲建华, 齐秀云,等. 干缩法、力学法、电学法测定木材纤维饱和点的研究[J]. 南京林业大学学报(自然科学版), 1985, 9(4):152-159.
    [9] 宋路路,高鑫,王新洲,等.低场NMR技术测定竹材的纤维饱和点[J]. 林业工程学报, 2017,2(1):36-40.
    [10] Zhang X, Li J, Yu Y, et al. Investigating the water vapor sorption behavior of bamboo with two sorption models[J]. Journal of Materials Science, 2018, 53:8241-8249.
    [11] Bratasz L, Kozlowska A, Kozlowski R. Analysis of water adsorption by wood using the Guggenheim-Anderson-de Boer equation[J]. European Journal of Wood and Wood Products, 2012, 70(4):445-451.
    [12] 王汉坤. 水分对毛竹细胞壁及宏观力学行为的影响机制[D]. 长沙:中南林业科技大学, 2010.
    [13] Jiang Z., Wang H, Yu Y,et al. Water absorption characteristics of bamboo and its constituent units[J]. Journal of Nanjing forestry university (natural science edition), 2012, 36(2):11-14.
    [14] 韩健. 竹篾含水率与竹胶合板生产工艺间的关系研究[J]. 林产工业, 1998, 25(2):23-25.
    [15] 吴开云, 翁月霞. 竹材霉腐类型及其与环境条件的关系[J]. 林业科学研究, 2000, 13(1):63-70.
    [16] Argyropoulos D, Alex R, Kohler R, et al. Moisture sorption isotherms and isosteric heat of sorption of leaves and stems of lemon balm (Melissa officinalis L.) established by dynamic vapor sorption[J]. LWT-Food Science and Technology. 2012, 47(2):324-331.
    [17] Brunauer S, Deming LS, Deming WE, et al. On a theory of the van der Waals adsorption of gases[J]. Journal of the american chemical society, 1940, 62(7):1723-1732.
    [18] 汪东风. 高级食品化学[M]. 北京:化学工业出版社, 2009.
    [19] Bedane A, Xiao H. Ei M,et al. Water vapor adsorption equilibrium and mass transport in unmodified and modified cellulose fiber-based materials[J]. Adsorption, 2014, 20(7):863-874.
    [20] 孙照斌, 田芸, 曲保雪. 龙竹竹材吸湿膨胀特性研究[J]. 林业机械与木工设备, 2006, 34(9):7-9.
    [21] Vega-Galvez A, Lopez J, Miranda M, et al. Mathematical modeling of moisture sorption isotherms and determination of isosteric heat of blueberry variety O'Neil[J]. International Journal of Food Science & Technology, 2009, 44(10):2033-2041.
    [22] 徐兆军, 丁建文, 丁涛, 等. 基于断层扫描图像技术的木材纤维饱和点以上水分分布与迁移研究[J]. 木材加工机械, 2010, (1):24-26.
    [23] 吕黄飞. 圆竹材微波真空干燥特性的研究[D]. 北京:中国林业科学研究院. 2018.
    [24] Chennouf N, Agoudjil B, Boudenne A, et al. Hydrothermal characterization of a new bio-based construction material:Concrete reinforced with date palm fibers[J]. Construction and Building Materials, 2018, 192(20):348-356.
    [25] Urquhart A. The mechanism of the adsorption of water by cotton[J]. Tex. Inst. 1929, 20:125-132.
    [26] Hill C, Norton A, Newman G, et al. The water vapor sorption properties of Sitka spruce determined using a dynamic vapor sorption apparatus[J]. Wood Science and Technology. 2010, 44(3):497-514.
    [27] Hill C, Keating B, Jalaludin Z, et al. A rheological description of the water vapour sorption kinetics behavior of wood invoking a model using a canonical assembly of Kelvin-Voigt elements and a possible link with sorption hysteresis[J]. Holzforschung, 2012, 66(1):35-47.
    [28] Weichert L. Untersuchungen ber das Sorption-und Quellungsverhalten von Fichte, Buche und Buchen-Pre vollholz bei Temperaturen zwischen 20 und 100 C[J]. Holzals Rohund Werkstoff, 1963, 21(8):290-300.
    [29] Yu Y, Fei B, Wang H, et al. Longitudinal mechanical properties of cell wall of Masson pine (Pinus massoniana Lamb) as related to moisture content:A nanoindentation study[J]. Holzforschung, 2011, 65(1):121-126.
    [30] Kulasinski K, Guyer R. Quantification of Nanopore Networks:Application to Amorphous Polymers[J]. Journal of Physical Chemistry C, 2016:acs.jpcc.6b10777.
    [31] Chen Q, Fang C, Wang G, et al. Hygroscopic swelling of moso bamboo cells[J]. Cellulose, 2019, 1-10. https://doi.org/10.1007/s10570-019-02833-y.
    [32] Patera A, Derome D, Griffa M, et al.Hysteresis in swelling and in sorption of wood tissue[J]. Journal of Structural Biology, 2013, 182(3):226-234.
    [33] Derome D, Kulasinski K, Zhang C,et al. Using Modeling to Understand the Hygromechanical and Hysteretic Behavior of the S2 Cell Wall Layer of Wood[J]. Plant Biomechanics, 2018, 247-268.
    [34] 马尔妮,王望,李想,等.基于LFNMR的木材干燥过程中水分状态变化[J]. 林业科学, 2017, 53(6):111-117.
    [35] Guo X, Wu Y, Yan N.Characterizing spatial distribution of the adsorbed water in wood cell wall of Ginkgo biloba L. by μ-FTIR and confocal Raman spectroscopy[J]. Holzforschung, 2017, 71(5):415-423.
    [36] Guo X, Wu Y, Yan N. In situ micro-FTIR observation of molecular association of adsorbed water with heat-treated wood[J]. Wood Science and Technology, 2018.52:971-985.
    [37] Zhang C, Kulasinski K, Derome D, et al.,Coupled Hygro-Thermo-Mechanical behavior of amorphous biopolymers:Molecular Dynamic Study of Softwood Lignin[J]. 2017. DOI: 10.1061/9780784480779.100
    [38] Youssefian S, Jakes J E, Rahbar N. Variation of Nanostructures, Molecular Interactions, and Anisotropic Elastic Moduli of Lignocellulosic Cell Walls with Moisture[J]. Scientific Reports, 2017, 7(2054):1-10.
    [39] 彭湃. 竹材主要化学成分及其点击化学和开环共聚研究[D]. 广州:华南理工大学, 2013.
    [40] Kulasinski K, Guyer R, Derome D, et al. Water Adsorption in Wood Microfibril-Hemicellulose System:Role of the Crystalline-Amorphous Interface[J]. Biomacromolecules, 2015, 16(9):2972-2978.
    [41] Guo X, Qing Y, Wu Y, et al. Molecular association of adsorbed water with lignocelluloses materials examined by micro-FTIR spectroscopy[J]. International journal of biological macromolecules, 2016, 83:117-125.
    [42] Olsson A, Lennart Salm n. The association of water to cellulose and hemicelluloses in paper examined by FTIR spectroscopy[J]. Carbohydrate Research, 2004, 339(4):813-818.
    [43] 史正军. 甜龙竹及巨龙竹半纤维素、木质素结构诠释及相互间化学键合机制解析[D]. 北京:北京林业大学, 2013.
    [44] 方桂珍. 20种树种木材化学组成分析[J]. 中国造纸, 2002(6):81-82.
    [45] Simon C, Garcia F, Garcia E, et al. Comparison of the saturated salt and dynamic vapor sorption methods in obtaining the sorption properties of Pinus pinea L.[J]. European Journal of Wood & Wood Products, 2017, 75(6):919-926.
    [46] Hill C, Norton A., & Newman G. The water vapor sorption behavior of natural fibers[J]. Journal of Applied Polymer Science,.2009, 112(3):1524-1537.
    [47] Hazaveh P, Mohammadi Nafchi A, Abbaspour H. The effects of sugars on moisture sorption isotherm and functional properties of cold water fish gelatin films[J]. International Journal of Biological Macromolecules, 2015, 79:370-376.
    [48] Yang T, Ma E, Cao J, et al. Effects of lignin in wood on moisture sorption and hygroexpansion tested under dynamic conditions[J]. Holzforschung, 2018, 72(11):943-950.
    [49] Dupleix A, Nguyen T, Vahtikari K, et al. The anisotropic temperature rise on wood surfaces during adsorption measured by thermal imaging[J]. Wood Science and Technology, 2018, 52(1):167-180.
    [50] Beck G, Thybring E, Thygesen L, et al. Characterization of moisture in acetylated and propionylated radiata pine using low-field nuclear magnetic resonance (LFNMR) relaxometry[J]. Holzforschung, 2017.
    [51] Scatena L, Brown M, Richmond G, Water at hydrophobic surfaces:weak hydrogen bonding and strong orientation effects[J]. Science, 2001, 292(5518):908-912.
  • 加载中
计量
  • 文章访问数:  1409
  • HTML全文浏览量:  96
  • PDF下载量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-06
  • 网络出版日期:  2021-04-29
  • 刊出日期:  2021-04-29

目录

    /

    返回文章
    返回