留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

竹材不同尺度单元纵向拉伸性能研究进展

王献轲 方长华 刘嵘 张淑琴 陈红 费本华

王献轲, 方长华, 刘嵘, 张淑琴, 陈红, 费本华. 竹材不同尺度单元纵向拉伸性能研究进展[J]. 竹子学报, 2020, 39(4): 14-24.
引用本文: 王献轲, 方长华, 刘嵘, 张淑琴, 陈红, 费本华. 竹材不同尺度单元纵向拉伸性能研究进展[J]. 竹子学报, 2020, 39(4): 14-24.
WANG Xian-ke, FANG Chang-hua, LIU Rong, ZHANG Shu-qin, CHEN Hong, FEI Ben-hua. The Longitudinal Tensile Properties of Bamboo Units with Different Scales[J]. JOURNAL OF BAMBOO RESEARCH, 2020, 39(4): 14-24.
Citation: WANG Xian-ke, FANG Chang-hua, LIU Rong, ZHANG Shu-qin, CHEN Hong, FEI Ben-hua. The Longitudinal Tensile Properties of Bamboo Units with Different Scales[J]. JOURNAL OF BAMBOO RESEARCH, 2020, 39(4): 14-24.

竹材不同尺度单元纵向拉伸性能研究进展

基金项目: 

国家自然科学基金:竹材的纹孔特征(31770599)

详细信息
    作者简介:

    王献轲,硕士研究生,从事竹材科学研究。E-mail:3098812501@qq.com。

    通讯作者:

    费本华,研究员,从事竹材科学研究。E-mail:feibenhua@icbr.ac.cn

The Longitudinal Tensile Properties of Bamboo Units with Different Scales

  • 摘要: 竹类植物属于禾本科竹亚科,竿形圆锥状、中空、壁厚、多节、高大。竹材具有优良的力学性能,是集高强度、高韧性、高延展性于一体的生物质复合材料;竹材由纤维、薄壁组织以及输导组织细胞所构成,其中纤维细胞起承载作用,竹材的拉伸强度主要由纤维所提供;薄壁组织细胞起运输和存储养分并传递载荷的作用;输导组织细胞主要起运输养分、水分和无机盐且起到一定的应力支撑作用。研究对竹材宏观、组织、细胞和细胞壁不同尺度纵向拉伸性能研究成果进行了综述,分析了不同尺度力学性质存在特征、差异性,以及对工程应用的意义,为竹材多尺度拉伸力学性能进一步研究提供借鉴。
  • [1] Vorontsova M S, Clark L G, Dransfield J, et al. World Check List of Bamboos and Rattans:In Celebration of INBAR's 20th Anniversary[M]. Beijing, 2016.
    [2] 江泽慧.世界竹藤[M]. 沈阳:辽宁科学技术出版社, 2002.
    [3] 国家林业和草原局.中国森林资源报告(2014-2018)[M].北京:中国林业出版社,2019.
    [4] Cardarelli F. Materials handbook[M]. London:Springer, 2018.
    [5] Amada S, Untao S. Fracture properties of bamboo[J]. Composites Part B:Engineering, 2001, 32(5):451-459.
    [6] Yulong D, Liese W. On the nodal structure of bamboo[J]. Journal of Bamboo Research, 1995, 14:24-32.
    [7] Silva E C N, Walters M C, Paulino G H. Modeling bamboo as a functionally graded material:lessons for the analysis of affordable materials[J]. Journal of Materials Science,2006, 41(21):6991-7004.
    [8] Mandl S, Alam S. Dynamic mechanical analysis and morphological studies of glass/bamboo fiber reinforced unsaturated polyester resin-based hybrid composites[J]. Journal of Applied Polymer Science, 2011,125(1):382-387.
    [9] Xue H Y, Chen Q H, Lin J H. Preparation and characterization of bamboo fibers coated with urushiol-ferric and its composite with polypropylene[J]. Journal of Applied Polymer Science,2012,125(1):439-447.
    [10] GB/T 15780-1995, 竹材物理力学性质试验方法[S].
    [11] 俞友明,方伟,林新春,等.苦竹竹材物理力学性质的研究[J].西南林学院学报,2005,25(3):64-68.
    [12] 柳凌燕.不同年龄茶秆竹和橄榄竹竹材物理力学性质的比较研究[D]. 福州:福建农林大学,2018:1-28.
    [13] Awalluddin D, Ariffin M A M, Osman M H, et al. Mechanical properties of different bamboo species[C].MATEC Web of Conferences,2017, 138:01024.
    [14] 杨喜,刘杏娥,杨淑敏,等.5种丛生竹材物理力学性质的比较[J].东北林业大学学报,2013,41(10):91-93

    +97.
    [15] Molari L, Mentrasti L, Fabiani M. Mechanical characterization of five species of Italian bamboo[C]. Structures. 2020, 24:59-72.
    [16] 李霞镇.毛竹材力学及破坏特性研究[D].北京:中国林业科学研究院硕士论文,2009.
    [17] 刘焕荣.竹子的断裂特性及断裂机制研究[D].北京:中国林业科学研究院博士论文集,2010:7-25.
    [18] 黄艳辉.毛竹纤维细胞力学性质研究[D].北京:中国林业科学研究院,2010.
    [19] 黄艳辉,费本华,余雁,等.毛竹纵向力学性质的梯度变化及断口特征[J].西北农林科技大学学报,2011,39(6):217-222.
    [20] 虞华强,费本华,任海清,等.毛竹顺纹抗拉性质的变异及与气干密度的关系[J].林业科学,2006,42(3):501-509.
    [21] 肖洒.楠竹杆件基本受力性能试验研究[D].重庆:重庆大学,2019.
    [22] 郝际平,秦梦浩,田黎敏,等.毛竹顺纹方向力学性能的试验研究[J]. 西安建筑科技大学学报(自然科学版).2017,49(6):777-783.
    [23] Shao Z, Wang F. Fracture Mechanics of Plant Materials[M]. Beijing:Science Press, 2012.
    [24] 江泽慧,邹惠渝,阮锡根,等.应用X射线衍射技术研究竹材超微结构I竹材纤丝角[J].林业科学,2000,37(3):122-125.
    [25] 杨淑敏,江泽慧,任海青,等.毛竹材质生成过程中微纤丝角的变化[J].南京林业大学学报(自然科学版),2009,33(5):73-76.
    [26] Huang Y H, Fei B H. Comparison of the mechanical characteristics of fibers and cell walls from Moso bamboo and wood[J]. BioResources, 2017, 12(4):8230-8239.
    [27] 刘杏娥,杨喜,杨淑敏,等.梁山慈竹微纤丝角的X射线衍射技术解析及对拉伸力学的影响[J].光谱学与光谱分析,2014,34(6):1698-1701.
    [28] 陈琦,陈美玲,费本华.水分影响竹材力学性能研究现状[J].竹子学报,2018,37(2):84-89.
    [29] Xu Q, Harries K, Li X, et al. Mechanical properties of structural bamboo following immersion in water[J]. Engineering Structures,2014,81:230-239.
    [30] Chen G, Luo H, Yang H, et al. Water effects on the deformation and fracture behaviors of the multi-scaled cellular fibrous bamboo[J]. Acta Biomaterialia, 2018(65):203-215.
    [31] 祝明桥,张紫薇,王华,等.竹材力学性能及混凝土环境中影响[J]. 湖南科技大学学报,2020,35(3):50-56.
    [32] 王汉坤.水分对毛竹细胞壁及宏观力学行为的影响机制[D]. 长沙:中南林业科技大学,2010.
    [33] 於琼花,俞友明,金永明,等.雷竹人工林竹材物理力学性质[J].浙江林学院学报,2004,21(2):130-133.
    [34] 包永洁,蒋身学,程大莉,等.热处理对竹材物理力学性能的影响[J].竹子研究汇刊,2009,28(4):50-53.
    [35] 夏雨,牛帅红,李延军,等.常压高温热处理对红竹竹材物理力学性能的影响[J].浙江农林大学学报,2018,35(4):765-770.
    [36] 刘海庆,吕莹.高温热处理对罗竹力学性能的影响[J].农机化研究,2020,42(7):191-196.
    [37] 温太辉,周文伟.中国竹类维管束解剖形态的研究初报(之一)[J].竹子研究汇刊,1984,3(1):1-21.
    [38] 温太辉,周文伟.中国竹类维管束解剖形态的研究初报(之二)[J].竹子研究汇刊,1985,4(1):28-43.
    [39] 杨云芳,刘志坤.毛竹材抗拉弹性模量及抗拉强度[J].浙江林学院学报,1996,13(1):21-27.
    [40] Amada S, Ichikawa Y, Munekata T, et al. Fiber texture and mechanical graded structure of bamboo[J]. Composites Part B:Engineering, 1997, 28(1-2):13-20.
    [41] 田根林,江泽慧,余雁.竹材韧性之源:两相复合材料结构及多级弱界面机制[C].第3届全国生物质材料科学与技术学术研讨会,2009.
    [42] 叶民权.竹维管束抗张强度之评估[J].中华林业,1995, 9(1):29-37.
    [43] Shao Z P, Fang C H, Huang S X, et al. Tensile properties of Moso bamboo (Phyllostachys pubescens) and its components with respect to its fiber-reinforced composite structure[J]. Wood science and technology, 2010, 44(4):655-666.
    [44] 尚莉莉,孙正军,郭伟峰.毛竹维管束的拉伸性能研究[J].林业机械与木工设备,2011,39(7):17-20.
    [45] Li H, Shen S. The mechanical properties of bamboo and vascular bundles[J]. Journal of Materials Research, 2011, 26(21):2749.
    [46] Li H B, Shen S P. Experimental investigation on mechanical behavior of Moso Bamboo vascular bundles[C]. Key Engineering Materials. 2011, 462:744-749.
    [47] 尚莉莉.毛竹维管束的形态特征及拉伸力学性能研究[D].北京:中国林业科学研究院,2011.
    [48] 周爱萍,黄东升,车慎思,等.竹材维管束分布及其抗拉力学性能[J].建筑材料学报,2012,15(5):730-734.
    [49] 倪林,孙正军,张秀标,等.毛竹维管束面积与维管束拉伸性能的相关性[J].木材加工机械,2015,26(1):32-34.
    [50] Shang L L, Sun Z J, Liu X E, et al. A novel method for measuring mechanical properties of vascular bundles in moso bamboo[J]. Journal of Wood Science,2015,61(6).
    [51] 黄盛霞,马丽娜,邵卓平,等.毛竹微观构造特征与力学性质关系的研究[J].安徽农业大学学报,2005,32(2):203-206.
    [52] André A. Fibres for strengthening of timber structures[M]. Lule tekniska universitet, 2006.
    [53] Bledzki A K, Gassan J. Composites reinforced with cellulose based fibres[J]. Progress in Polymer Science,1999,24(2).
    [54] 安晓静.竹子的多尺度拉伸力学行为及其强韧机制[D].北京:中国林业科学研究院, 2013.
    [55] 安晓静,王昊,李万菊,等.毛竹纤维鞘的拉伸力学性能[J].南京林业大学学报(自然科学版),2014,38(2):6-10.
    [56] Chen H, Cheng H, Wang G, et al. Tensile properties of bamboo in different sizes[J]. Journal of wood science, 2015, 61(6):552-561.
    [57] 王新洲,袁朱润,黄雅茜,等.毛竹工艺纤维高温饱和蒸汽-机械分离及其物理力学特性[J/OL].复合材料学报:1-9[2020-11-24

    ].
    [58] 黄慧,贺磊,余能富,等.竹龄对竹纤维束提取及性能的影响[J].南方林业科学,2017,45(1):56-59.
    [59] Wang F L, Shao Z P. Study on the variation law of bamboo fibers' tensile properties and the organization structure on the radial direction of bamboo stem[J]. Industrial Crops and Products, 2020, 152:112521.
    [60] Hu K L, Huang Y H, Fei B H,et al. Investigation of the multilayered structure and microfibril angle of different types of bamboo cell walls at the micro/nano level using a LC-PolScope imaging system[J]. Cellulose,2017,24(11).
    [61] 王福利,王献轲,周佳硕,等.竹材薄壁组织拉伸性能及其变异规律的研究[J].北京林业大学学报, 2020,42(11):1-8.
    [62] Wang D, Lin L, Fu F. Fracture mechanisms of Moso bamboo (Phyllostachys pubescens) under longitudinal tensile loading[J]. Industrial Crops and Products, 2020, 153:112574.
    [63] 余雁,王戈,费本华,等.植物短纤维专用力学性能测试仪的研制和开发[C].呼和浩特:第二届全国生物质材料科学与技术学术研讨会,2008:559-563.
    [64] 黄艳辉,费本华,余雁,等.毛竹单根纤维的力学性质研究[J].中国造纸,2009,28(8):10-12.
    [65] Yu Y, Jiang Z H, Fei B H, et a1. An improved micro tensile technique for mechanical characterization of short plant fibers:a case study on bamboo fibers[J].Journal of Materials Science,2011,46(3) 739.746.
    [66] GB/T 35378-2017, 植物单根短纤维拉伸力学性能测试方法[S].
    [67] Wang G, Shi S Q, Wang J, et al. Tensile properties of four types of individual cellulosic fibers[J]. Wood and Fiber Science, 2011, 43(4):353-364.
    [68] 田根林.竹纤维力学性能的主要影响因素研究[D]. 北京:中国林业科学研究院,2015.
    [69] 陈红.竹纤维细胞壁结构特征研究[D].北京:中国林业科学研究院,2014.
    [70] 安鑫.毛竹纤维细胞壁微纤丝取向与超微构造研究[D].北京:中国林业科学研究院,2016.
    [71] 刘嵘,陈美玲,刘贤淼,等.树脂铸型法研究毛竹材细胞壁的纹孔特征[J].林业科学,2019,55(4):196-202.
    [72] Chen M, Dai C, Liu R, et al. Influence of cell wall structure on the fracture behavior of bamboo (Phyllostachys edulis) fibers[J]. Industrial Crops and Products, 2020(155):112787.
    [73] 陈红.单根竹纤维性能与制取方法关系的研究[D].北京:中国林业科学研究院,2011.
    [74] Chen H, Yu Y, Zhong T, et al. Effect of alkali treatment on microstructure and mechanical properties of individual bamboo fibers[J]. Cellulose, 2017, 24(1):333-347.
    [75] Adel Salih A, Zulkifli R, Azhari C H. Tensile properties and microstructure of single-cellulosic bamboo fiber strips after alkali treatment[J]. Fibers, 2020, 8(5):26.
    [76] Zhang K, Wang F, Liang W, et al. Thermal and mechanical properties of bamboo fiber reinforced epoxy composites[J]. Polymers, 2018, 10(6):608.
    [77] Manalo A C, Wani E, Zukarnain N A, et al. Effects of alkali treatment and elevated temperature on the mechanical properties of bamboo fibre-polyester composites[J]. Compos. Part B Eng,2015(80):73-83.
    [78] 叶远静,袁小红.竹浆纤维的力学性能分析[J]. 中国纤检, 2011(17):82-84.
    [79] Wang H K, An X J, Li W J, et al. Variation of mechanical properties of single bamboo fibers (Dendrocalamus latiflorus Munro) with respect to age and location in culms[J].Holzforschung,2014, 68(3):291-298.
    [80] Kasmuric M. Engineering properties and impact resistance of kenaf and rice straw fibres reinforced concrete[J]. J. Kejuruter. 2018(1):71-76.
    [81] 刘一星,赵广杰.木质资源材料学[M].北京:中国林业出版社, 2004.
    [82] 刘嵘,杨淑敏,李晖,等.毛竹材导管分子的纹孔特征[J].南京林业大学学报(自然科学版),2017,41(6):163-168.
    [83] Londoño X, Camayo G C, Riaño N M, et al. Characterization of the anatomy of Guadua angustifolia (Poaceae:Bambusoideae) culms[J]. Bamboo Science and Culture, 2002, 16(1):18-31.
    [84] Carlquist S, Schneider E L. Origins and nature of vessels in monocotyledons. 13. Scanning electron microscopy studies of xylem in large grasses[J]. International Journal of Plant Sciences, 2011, 172(3):345-351.
    [85] Wimmer R, Lucas B N, Oliver W C, et al. Longitudinal hardness and Young's modulus of spruce tracheid secondary walls using nanoindentation technique[J]. Wood Science and Technology,1997,31(2).
    [86] 余雁,费本华,张波,等.针叶材管胞细胞壁不同壁层的纵向弹性模量和硬度[J].北京林业大学学报,2006(5):114-118.
    [87] Yu Y, Fei B, Zhang B, et al. Cell-wall mechanical properties of bamboo investigated by in-situ imaging nanoindentation[J]. Wood and Fiber Science, 2007, 39(4):527-535.
    [88] Zou L, Jin H, Lu W Y, et al. Nanoscale structural and mechanical characterization of the cell wall of bamboo fibers[J]. Materials Science and Engineering:C, 2009, 29(4):1375-1379.
    [89] Ren D, Wang H, Yu Z, et al. Mechanical imaging of bamboo fiber cell walls and their composites by means of peak force quantitative nanomechanics (PQNM) technique[J]. Holzforschung, 2015, 69(8):975-984.
    [90] 向娥琳.毛竹生长过程中细胞壁结构与性能的变化研究[D].雅安:四川农业大学,2018.
    [91] 袁晶,方长华,张淑琴,等.竹材细胞壁水分研究进展[J].竹子学报,2020,39(1):24-32.
  • 加载中
计量
  • 文章访问数:  719
  • HTML全文浏览量:  138
  • PDF下载量:  87
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-03
  • 网络出版日期:  2021-10-16

目录

    /

    返回文章
    返回