Volume 39 Issue 3
Jul.  2021
Turn off MathJax
Article Contents
LV Jia-xin, WANG Xiang, XIANG Heng-wang, WEI Sai-jun, WANG Bin, GAO Yan, ZHANG Ru-min. Effects of volatile components of Phyllostachys edulis on air negative ion and microorganisms[J]. JOURNAL OF BAMBOO RESEARCH, 2020, 39(3): 49-57.
Citation: LV Jia-xin, WANG Xiang, XIANG Heng-wang, WEI Sai-jun, WANG Bin, GAO Yan, ZHANG Ru-min. Effects of volatile components of Phyllostachys edulis on air negative ion and microorganisms[J]. JOURNAL OF BAMBOO RESEARCH, 2020, 39(3): 49-57.

Effects of volatile components of Phyllostachys edulis on air negative ion and microorganisms

  • Received Date: 2020-05-22
    Available Online: 2021-07-17
  • In order to study the effects of of volatile organic compounds (VOCs) of Phyllostachys edulis on air microorganism,by using the dynamic systemic adsorption method and hot air stripping gas chromatography-mass spectrometry (TDS-GC-MS), the near natural Ph. edulis leaf VOCs,the composition and content of the VOCs in the Ph. edulis forest under near natural condition in different seasons, the concentrations of negative air ions and microorganisms in Ph. edulis forest were measured. The inhibition effect of volatiles on microorganisms was verified by microbe monomer test. The results showed that a total of 35 kinds of volatile substances were detected from a individual bamboo,including aldehydes (26.2%),esters (21.9%),alcohols (18.4%),terpenes (16.6%),etc. Thetypes and relative contents of VOCs of Ph. edulis forest were different between seasons,summer > spring > autumn. The aldehydes in spring and summer were 30.3 times and 39.8 times higher than that in autumn respectively. In spring,summer and autumn,the air anion concentration in the Ph. edulis grove was 1 030,1 975 and 547 per cubic centimeter respectively. The number of air microorganisms in the Ph. edulis varied dynamically in different seasons,and the concentration decreased significantly compared with the forest margin. The inhibition rates of bacteria in spring,summer and autumn were 72.4%,61.3% and 78.4%,respectively. The inhibition rate of fungi was 62.9%,59.7% and 72%.The inhibition rate of actinomycetes was 61.9%,58% and 72.1%.VOCs released by Ph. edulis can inhibit the growth of air microorganisms and promote the formation of NAI.
  • loading
  • [1]
    黄爱葵,李楠. 植物源挥发性有机物的生态意义(综述)[J]. 亚热带植物科学,2011,40(3):81-86.
    [2]
    王凌健,方欣,杨长青,等. 植物萜类次生代谢及其调控[J].中国科学:生命科学,2013,43(12):1030-1046.
    [3]
    林霞,陈峥,朱育菁,等. 3种紫苏属植物鲜叶的挥发性物质的异质性分析[J]. 热带作物学报,2020,41(3):586-595.
    [4]
    杨文,刘惠芳,陈瑶,等. 香茅草挥发物及其主要成分对3种茶树病原真菌的抑制性研究[J]. 茶叶科学,2020,40(2):269-278.
    [5]
    Alex G. Biological and Chemical Diversity of Biogenic Volatile Organic Emissions into the Atmosphere[J]. Isrn Atmospheric ences,2013,33:339-356.
    [6]
    张秀标,费本华,江泽慧,等.竹展平板胶合性能研究[J].林产工业,2020,57(9):16-19.
    [7]
    谢占芳. 八种菊花挥发性成分及其抑菌活性研究[D]. 河南大学,2016.
    [8]
    孙和龙. α-水芹烯及壬醛对番茄圆弧青霉和灰霉的抑菌作用研究[D]. 湘潭大学,2017.
    [9]
    Fadil M,Fikri-Benbrahim K,Rachiq S,et al. Combined treatment of Thymus vulgaris L.,Rosmarinus officinalis L.and Myrtus communis L. essential oils against Salmonella typhimurium:Optimization of antibacterial activity by mixture design methodology[J]. European Journal of Pharmaceutics and Biopharmaceutics,2018,126:211-220.
    [10]
    佟棽棽. 迷迭香和柠檬草的挥发性成分及其抗抑郁、抑菌作用的研究[D]. 上海交通大学,2009.
    [11]
    柏智勇,吴楚材. 空气负离子与植物精气相互作用的初步研究[J]. 中国城市林业,2008,6(1):58-60.
    [12]
    Yan X J,Wang H R,Hou Z Y,et al. Spatial analysis of the ecological effects of negative air ions in urban vegetated areas:A case study in Maiji,China[J]. Urban Forestry & Urban Greening,2015,14(3):636-645.
    [13]
    Kellogg,E. W. Air Ions:their Possible Biological Significance and Effects[J]. Journal of Bioelectricity,1984,3(1-2):119-136.
    [14]
    封焕英,范少辉,苏文会,等. 不同经营方式下毛竹光合特性分异研究[J].生态学报,2017,37(7):2307-2314
    [15]
    Cui K,He C Y,Zhang J G,et al. Temporal and spatial profiling of internode elongation-associated protein expression in rapidly growing culms of Bamboo. Journal Proteome Research,2012,11(4):2492-2507.
    [16]
    Liu J,Cheng Z,Xie L,et al. Multifaceted role of PheDof12-1 in the regulation of flowering time and abiotic stress responses in moso bamboo (Phyllostachys edulis)[J]. International journal of molecular sciences,2019,20(2):424-436.
    [17]
    Peng Z H,Others. The draft genome of the fast-growing non-timber forest species moso bamboo(Phyllostachys heterocycla)[J]. Nature Genetics. 2013,45(4):456-461.
    [18]
    Gao Y,Jin Y J,Hai-Dong L,et al. Volatile organic compounds and their roles in bacteriostasis in five conifer species[J]. Journal of Integrative Plant Biology,2005,47(4):499-507.
    [19]
    肖明,王雨净. 微生物学实验[M]. 科学出版社,2008.
    [20]
    Theis N,Lerdau M. The evolution of function in plant secondary metabolites[J]. International Journal of Plant ences,2003,164(S3):93-102.
    [21]
    Guenther A,Hewitt C N,Erickson D,et al. A global model of natural volatile organic compound emissions[J]. Journal of Geophysical Research Atmospheres,1995,100(D5):8873-8892.
    [22]
    郭慧媛. 毛竹对模拟酸雨胁迫的生理生化响应机制[D]. 中国林业科学研究院,2014.
    [23]
    赵美萍,邵敏,白郁华,等. 我国几种典型树种非甲烷烃类的排放特征[J]. 环境化学,1996(1):69-75.
    [24]
    花圣卓,陈俊刚,余新晓,等. 温带典型森林树种的萜烯类化合物排放及其与环境要素的相关性[J]. 林业科学,2016,52(11):19-28.
    [25]
    胡立香. 白皮松林挥发物及其时空动态变化[D]. 中国林业科学研究院,2007.
    [26]
    Unsicker S B,Kunert G,Gershenzon J. Protective perfumes:the role of vegetative volatiles in plant defense against herbivores[J]. Current Opinion in Plant Biology,2009,12(4):479-485.
    [27]
    Dudareva,N. Developmental regulation of methyl benzoate biosynthesis and emission in snapdragon flowers[J]. The Plant Cell,2000,12(6):949-961.
    [28]
    Staudt M,Lhoutellier L.Monoterpene and sesquiterpene emissions from Quercus coccifera exhibit interacting responses to light andtemperature[J].Biogeosci Discuss,2011,8(3):2757-2771.
    [29]
    吴楚材,郑群明,钟林生. 森林游憩区空气负离子水平的研究[J]. 林业科学,2001(5):75-81.
    [30]
    周德平,佟维华,温日红,等. 闾山国家级森林公园负氧离子观测及其空气质量分析[J]. 干旱区资源与环境,2015,29(3). 181-187.
    [31]
    邵海荣,杜建军,单宏臣,等. 用空气负离子浓度对北京地区空气清洁度进行初步评价[J]. 北京林业大学学报,2005(4):56-59.
    [32]
    郭二果,王成,郄光发,等. 城市森林生态保健功能表征因子之间的关系[J]. 生态学杂志.2013.32(11):2893-2903.
    [33]
    Da Cruz Cabral,Lucía,Fernández Pinto,et al.Application of plant derived compounds to control fungal spoilage and mycotoxin production in foods[J]. International Journal of Food Microbiology,2013,166(1):1-14.
    [34]
    陆志科. 竹叶生物活性成分提取分离及其抗菌活性研究[D]. 中南林学院,2004.
    [35]
    Mari M,Bautista-Baos S,Sivakumar D. Decay control in the postharvest system:Role of microbial and plant volatile organic compounds[J]. Postharvest Biology & Technology,2016:70-81.
    [36]
    向天勇,张驰,谢达平. 箬竹叶抑菌成分的分离纯化及结构分析[J]. 湖北民族学院学报(自然科学版),2002(3):70-74.
    [37]
    Chuyen N V,Kurata T,Kato H,et al. Antimicrobial activity of kumazasa (Sasa albo-marginata)[J]. Journal of the Agricultural Chemical Society of Japan,1982,46(4):971-978.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (599) PDF downloads(45) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return