Volume 41 Issue 3
Sep.  2022
Turn off MathJax
Article Contents
LI Dan, WANG Jie-hui, HU De-yue, LI Xu-dong, ZHANG Zhong-feng, LI Xia, ZHANG Zhong-chao, LU Xing-hui, ZHAO Hong-xia. Relationship between Functional Traits of Fine Roots and Rhizosphere Soil Nutrients of 8 Ornamental Bamboos in Western Shandong Province[J]. JOURNAL OF BAMBOO RESEARCH, 2022, 41(3): 63-71. doi: 10.12390/jbr2022086
Citation: LI Dan, WANG Jie-hui, HU De-yue, LI Xu-dong, ZHANG Zhong-feng, LI Xia, ZHANG Zhong-chao, LU Xing-hui, ZHAO Hong-xia. Relationship between Functional Traits of Fine Roots and Rhizosphere Soil Nutrients of 8 Ornamental Bamboos in Western Shandong Province[J]. JOURNAL OF BAMBOO RESEARCH, 2022, 41(3): 63-71. doi: 10.12390/jbr2022086

Relationship between Functional Traits of Fine Roots and Rhizosphere Soil Nutrients of 8 Ornamental Bamboos in Western Shandong Province

doi: 10.12390/jbr2022086
  • Received Date: 2022-06-28
  • Underground ecological adaptation strategies of different bamboo species were investigated in order to reveal the relationship between functional traits of fine roots and rhizosphere soil of ornamental bamboo species in urban areas of northern China. Taking 8 ornamental bamboo species in Liaocheng Bamboo Garden of Shandong Province as research subjects, samples of root system and rhizosphere soil were obtained in consecutive soil layers of 10 cm in depth below the soil surface. The soil physical and chemical properties and the morphological parameters of fine roots were determined. The results showed that (1) The soil nutrient content of different bamboo species varied greatly and decreased with the increase of soil depth. The contents of organic matter, total N, available P and available K in the 0~10 cm soil layer of Phyllostachys bambusoides and Phyllostachys glauca were higher, but those of Phyllostachys aureosulcata McClure ‘Spectabilis’, Phyllostachys bissetii and Oligostachyum lubricum were lower. (2) The correlation between fine root morphological parameters of different bamboo species was significant, with clear vertical distribution pattern. Fine root biomass was significantly and positively correlated with total root length, root surface area, root volume, and fine root length density. Root tissue density was significantly and negatively correlated with specific root length, specific root surface area, and fine root length density. P. bambusoides and P. glauca had higher fine root biomass and root tissue density, while P. bissetii and O. lubricum had higher specific root length and specific root surface area. (3) Fine root biomass, total root length, root surface area, root volume, and fine root length density were significantly and positively correlated with contents of soil organic matter and total N. The content of available K made the highest contribution (34.2%) to the fine root morphological variation. P. bambusoides and P. glauca have good environmental adaptability and can be effectively used for urban greening in northern China. An appropriate increase in the fertility of top soil is beneficial to the growth of fine roots.
  • loading
  • [1]
    Wurzburger N,Wright S J. Fine-root responses to fertilization reveal multiple nutrient limitation in a lowland tropical forest[J]. Ecology,2015,96(8): 2137-2146.
    [2]
    张进如,闫晓俊,贾林巧,等. 亚热带天然常绿阔叶林林下9种灌木细根形态和C、N化学计量特征[J]. 生态学报,2022,42(9

    ):3716-3726.
    [3]
    Iversen C M,McCormack M L,Powell A S,et al. A global Fine-Root Ecology Database to address below-ground challenges in plant ecology[J]. New Phytologist,2017,215(1): 15-26.
    [4]
    王志保. 滨海吹填土植物细根特征及对土壤特性和树种多样性的响应[D]. 上海:华东师范大学,2020.
    [5]
    孟婷婷,倪健,王国宏. 植物功能性状与环境和生态系统功能[J]. 植物生态学报,2007,31(1):150-165.
    [6]
    吴敏,邓平,赵英,等. 不同林龄红锥人工林细根垂直分布和衰老生理特征[J]. 生态学杂志,2019,38(9):2622-2629.
    [7]
    王静波,于水强,郝倩葳,等. 不同林龄亚热带次生林细根生物量和形态分布差异[J]. 西北农林科技大学学报(自然科学版),2021,49(3):38-46.
    [8]
    权伟,余少娜,王国兵,等. 武夷山不同海拔植被土壤细根比根长季节动态[J]. 南京林业大学学报(自然科学版),2011,35(6):139-142.
    [9]
    Han S H,Kim S,Li G,et al. Effects of warming and precipitation manipulation on fine root dynamics of Pinus densiflora seedlings[J]. Forests,2018,9(1): 7-14.
    [10]
    柳文杰,杨红,李紫帅,等. 雅江中游干旱河谷砂生槐植株—细根—土壤化学计量特征[J]. 西南农业学报,2022,35(3):608-616.
    [11]
    许立. 亚热带20个树种细根功能性状研究[D]. 长沙:中南林业科技大学,2021.
    [12]
    郑淼,郭毅,王丽敏. 水分调亏对银杏幼苗根系生长发育和光合特性的影响[J]. 山东农业大学学报(自然科学版),2021,52(3):430-435.
    [13]
    何睿橦,钟全林,李宝银,等. 氮磷配施对刨花楠幼林细根性状的影响[J]. 应用生态学报,2022,33(2):337-343.
    [14]
    Forde B,Lorenzo H. The nutritional control of root development[J]. Plant and Soil,2001,232(1): 51-68.
    [15]
    童亮,李平衡,周国模,等. 竹林鞭根系统研究综述[J]. 浙江农林大学学报,2019,36(1):183-192.
    [16]
    戚一应. 祁连山南坡不同林地土壤水分及其水源涵养特征研究[D]. 西宁:青海师范大学,2017.
    [17]
    王钊颖,程林,王满堂,等. 武夷山落叶林木本植物细根性状研究[J]. 生态学报,2018,38(22):8088-8097.
    [18]
    申紫雁,刘昌义,胡夏嵩,等. 黄河源区高寒草地不同深度土壤理化性质与抗剪强度关系研究[J]. 干旱区研究,2021,38(2):392-401.
    [19]
    Toberman H,Chen C,Xu Z. Rhizosphere effects on soil nutrient dynamics and microbial activity in an Australian tropical lowland rainforest[J]. Soil Research,2011,49(7): 652-660.
    [20]
    安慧,韦兰英,刘勇,等. 黄土丘陵区油松人工林和白桦天然林细根垂直分布及其与土壤养分的关系[J]. 植物营养与肥料学报,2007,13(4):611-619.
    [21]
    王慧,刘宁,刘金龙,等. 晋北干旱区盐碱地柽柳形态特征及其与土壤养分的关系[J].中南林业科技大学学报,2020,40(1):37-48.
    [22]
    马玉学. 银川平原永宁灌区土壤水盐分布特征研究[J]. 宁夏工程技术,2020,19(3):241-246.
    [23]
    杨雨,李芳兰,包维楷,等. 川西亚高山11种常见灌木细根形态特征[J]. 应用与环境生物学报,2020,26(6

    ):1376-1384.
    [24]
    Burton A J,Pregitzer K S,Hendrick R L. Relationships between fine root dynamics and nitrogen availability in Michigan northern hardwood forests[J]. Oecologia,2000,125(3): 389-399.
    [25]
    Li F L,Hu H,McCormlack M L,et al. Community-level economics spectrum of fine-roots driven by nutrient limitations in subalpine forests[J]. Journal of Ecology,2019,107(3): 1238-1249.
    [26]
    Rood S B,Bigelow S G,Hall A A. Root architecture of riparian trees: river cut-banks provide natural hydraulic excavation,revealing that cottonwoods are facultative phreatophytes[J]. Trees,2011,25(5): 907-917.
    [27]
    武娟娟,邱云霄,王渝淞,等. 坝上地区不同退化程度小叶杨细根分布特征[J]. 水土保持学报,2021,35(5):242-248.
    [28]
    张广欣. 林农复合下三倍体毛白杨幼林细根分布特征研究[D]. 北京:北京林业大学,2020.
    [29]
    陈晓林,陈亚鹏,李卫红,等. 干旱区不同地下水埋深下胡杨细根空间分布特征[J]. 植物科学学报,2018,36(1):45-53.
    [30]
    Zhou T,Wang L,Sun X,et al. Light intensity influence maize adaptation to low P stress by altering root morphology[J]. Plant and Soil,2020,447: 183-197.
    [31]
    侯晓娟,李志,崔诚,等. 武功山芒根系垂直分布及其与土壤养分的关系[J]. 草业科学,2017,34(12):2428-2436.
    [32]
    王福根,卫星杓,赵国春,等. 无患子细根形态及垂直分布特征对配方施肥措施的响应[J]. 南京林业大学学报(自然科学版),2021,45(4):58-66.
    [33]
    陈柳娟,钟全林,李宝银,等. 翅荚木人工林不同径阶间细根主要功能性状与根际土壤养分的关系[J]. 应用生态学报,2019,30(11):3627-3634.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (195) PDF downloads(48) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return