留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

毛竹林叶片碳氮磷化学计量特征的海拔梯度效应

黄树荣 谢燕燕 陈双林 郭子武

黄树荣, 谢燕燕, 陈双林, 郭子武. 毛竹林叶片碳氮磷化学计量特征的海拔梯度效应[J]. 竹子学报, 2020, 39(1): 73-78.
引用本文: 黄树荣, 谢燕燕, 陈双林, 郭子武. 毛竹林叶片碳氮磷化学计量特征的海拔梯度效应[J]. 竹子学报, 2020, 39(1): 73-78.
HUANG Shu-rong, XIE Yan-yan, CHEN Shuang-lin, GUO Zi-wu. The Response of Stoichiometry of Leaf Carbon,Nitrogen and Phosphorus of Phyllostachys edulis Forests to Altitude[J]. JOURNAL OF BAMBOO RESEARCH, 2020, 39(1): 73-78.
Citation: HUANG Shu-rong, XIE Yan-yan, CHEN Shuang-lin, GUO Zi-wu. The Response of Stoichiometry of Leaf Carbon,Nitrogen and Phosphorus of Phyllostachys edulis Forests to Altitude[J]. JOURNAL OF BAMBOO RESEARCH, 2020, 39(1): 73-78.

毛竹林叶片碳氮磷化学计量特征的海拔梯度效应

基金项目: 

浙江省重点研发计划(2017C02106,2020C02008)

详细信息
    作者简介:

    黄树荣,工程师,从事从林业科技推广方面的研究。E-mail:huangsrly@163.com。

    通讯作者:

    郭子武,副研究员,从事竹林生态与培育研究。E-mail:hunt-panther@163.com

The Response of Stoichiometry of Leaf Carbon,Nitrogen and Phosphorus of Phyllostachys edulis Forests to Altitude

  • 摘要: 毛竹是中国重要的经济竹种,区域上具有明显的垂直分布特点。为揭示毛竹林叶片碳氮磷化学计量特征的海拔梯度效应,为毛竹林科学的林分管理与土壤养分补充提供理论依据,测定了3个海拔梯度毛竹林叶片碳(C)、氮(N)、磷(P)含量,分析了其化学计量特征和异速增长关系。结果表明:随着立竹年龄的增大,毛竹林立竹叶片碳、氮、磷含量及N:P均总体上呈降低趋势,而C:N、C:P则总体上呈升高趋势,1度立竹叶片碳、氮、磷含量均显著高于2度、3度立竹,且后2者间碳、氮、磷含量及其化学计量比均无显著差异。随海拔梯度的升高,毛竹林叶片碳含量略有降低,而氮、磷含量呈降低趋势,其中,中、低海拔叶片氮、磷含量显著高于高海拔,且前2者氮含量无显著差异,而磷含量差异显著;叶片C:N、C:P、N:P均呈上升趋势,其中,中、低海拔叶片C:N显著低于高海拔,中、高海拔叶片N:P显著高于低海拔,叶片C:P海拔梯度间差异显著,其他均无显著差异;不同海拔梯度毛竹林叶片碳、氮、磷间呈显著的正异速增长关系,随海拔梯度的升高,C-N、C-P异速增长指数显著下降,而N-P异速增长指数显著提高。研究表明,随海拔梯度的升高,毛竹林叶片氮、磷含量降低,利用率提高,P素限制性作用增强,建议在高海拔毛竹林经营中宜适当增加磷素的补充。
  • [1] Körner C. The use of altitude in ecological research[J]. Trends in Ecology and Evolution,2007,22:569-574.
    [2] Read Q D,Moorhead L C,Swenson N G,et al. Convergent effects of elevation on functional leaf traits within and among species[J]. Functional Ecology,2014,28:37-45.
    [3] Soethe N,Lehmann J,Engels C. Nutrient availability at different altitudes in a tropical montane forest in Ecuador[J]. Journal of Tropical Ecology,2008,24:397-406.
    [4] Westoby M,Falster D S,Moles A T,et al. Plant ecological strategies:some leading dimensions of variation between species[J]. Annual Review of Ecology and Systematics,2002,33(1):125-159.
    [5] Güsewell S,Koerselman W,Verhoeven JTA. Biomass N:P ratios as indicators of nutrient limitation for plant populations in wetlands[J]. Ecological Appications,2003,13:372-384.
    [6] Güsewell S. N:P ratios in terrestrial plants:variation and functional significance[J]. New Phytologist,2004,164:243-266.
    [7] Tessier J T,Raynal D J. Use of nitrogen to phosphorus ratios in plant tissue as an indicator of nutrient limitation and nitrogen saturation[J]. Journal of Applied Ecology,2003,40:523-534.
    [8] Zhang L X,Bai Y F,Han X G. Application of N:P stoichiometry to ecology studies[J]. Acta Botanica Sinica,2003,45:1009-1018.
    [9] Wardle D A,Walker L R,Bardgett R D. Ecosystem properties and forest decline in contrasting long-term chronosequences[J]. Science,2004,305,509-513.
    [10] He J S,Fang J,Wang Z,et al. Stoichiometry and large-scale patterns of leaf carbon and nitrogen in the grassland biomes of China[J]. Oecologia,2006,149:115-122.
    [11] 刘广路,范少辉,漆良华,等. 闽西北不同类型毛竹林养分分布及生物循环特征[J]. 生态学杂志,2010,29(11):2155-2161.
    [12] Yen T M,Lee J S. Comparing aboveground carbon sequestration between moso bamboo (Phyllostachys heterocycla) and China fir (Cunninghamia lanceolata) forests based on the allometric model[J]. Forest Ecology and Management,2011,261:995-1002.
    [13] 林振清. 海拔影响毛竹林土壤有机碳组成的研究[J]. 竹子学报,2016,35(2):30-33.
    [14] 陈双林,杨清平,郭子武,等. 海拔对毛竹林土壤物理性质和水分特性的影响[J]. 林业科技开发,2010,24(1):64-68.
    [15] 唐轶琳,周本智,邓宗付,等. 不同海拔高度毛竹林凋落量动态分析[J]. 林业科学研究,2013,26(2),214-219.

    .
    [16] 方精云,何建源,郑成洋. 福建武夷山自然保护区地形对毛竹(Phyllostachys pubescens)林分布的影响[J]. 生物多样性,2004,12(1):75-81.
    [17] 张厚喜,林丛,程浩,等. 武夷山不同海拔梯度毛竹林土壤有机碳特征及影响因素[J]. 土壤,2019,51(4):821-828.
    [18] 范叶青,周国模,施拥军,等. 地形条件对毛竹林分结构和植被碳储量的影响[J]. 林业科学,2013,49(11):180-185.
    [19] 汪佑宏,田根林,刘杏娥,等. 不同海拔高度对毛竹主要物理力学性质的影响[J]. 安徽农业大学学报,2007,34(2):88-91.
    [20] 郑淑霞,上官周平. 黄土高原地区植物叶片养分组成的空间分布格局[J]. 自然科学进展,2006,16(8):965-973.
    [21] Warton D I,Wright I,Falster D S. Bivariate line-fitting methods for allometry[J]. Biological Reviews,2006,81:259-291.
    [22] Huey R B,Gilchrist G W,Carlson M L,et al. Rapid evolution of a geographic cline in size in an introduced fly[J]. Science,2000,287:308-309.
    [23] Weiner J. Allocation,plasticity and allometry in plants[J]. Perspectives in Plant Ecology,Evolution and Systematics,2004,6:207-215.
    [24] Falster D S,Warton D I,Wright I J. User's Guide to SMATR:Standardized Major Axis Tests and Routines Version 2.0. http://www.bio.mq.edu.au/ecology/SMATR/. 2006.
    [25] 杨蕾,孙晗,樊艳文,等.长白山木本植物叶片氮磷含量的海拔梯度格局及影响因子[J]. 植物生态学报,2017,41(12):1228-1238.
    [26] 陈晓萍,郭炳桥,钟全林,等. 武夷山不同海拔黄山松细根碳、氮、磷化学计量特征对土壤养分的适应[J]. 生态学报,2018,38(1):273-281.
    [27] 潘红丽,李迈和,蔡小虎,等. 海拔梯度上的植物生长与生理生态特性[J]. 生态环境学报,2009,18(2):722-730.
    [28] Shi P,Körner C,Hoch G. A test of the growth-limitation theory for alpine tree line formation in evergreen and deciduous taxa of the eastern Himalayas[J]. Functional Ecology,2008,22(2):213-220.
    [29] 周永斌,吴栋栋,于大炮,等. 长白山不同海拔岳桦非结构碳水化合物含量的变化[J]. 植物生态学报,2009,33(1):118-124.
    [30] 杜满义,范少辉,刘广路,等. 中国毛竹林碳氮磷生态化学计量特征[J]. 植物生态学报,2016,40(8):760-774.
    [31] 黄建军,王希华. 浙江天童32种常绿阔叶树叶片的营养及结构特征[J].华东师范大学学报(自然科学版),2003(1):92

    -97.
    [32] Drenovsky R E,Richards J H. Critical N:P values:predicting nutrient deficiencies in desert shrublands[J]. Plant and Soil,2004,259(1-2):59-69.
    [33] Subhani A,Huang C Y. Long term effects of fertilizers on soil environment quality[J]. Journal of Zhejiang University (Agric. & Life Sci.),1999,25(5):505-506.
  • 加载中
计量
  • 文章访问数:  1608
  • HTML全文浏览量:  96
  • PDF下载量:  103
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-30
  • 网络出版日期:  2021-04-29
  • 刊出日期:  2021-04-29

目录

    /

    返回文章
    返回